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In this work, quantum metrology techniques are applied to the imaging of objects with a

nonuniform refractive spatial pro¯le. A sensible improvement on the classical accuracy is shown

to be found when the \Twin Beam (TWB) State" is used. In particular, exploiting the multi-
mode spatial correlation, naturally produced in the Parametric Down Conversion (PDC) pro-

cess, allows a 2D reconstruction of complex spatial pro¯les, thus enabling an enhanced imaging.

The idea is to use one of the spatially multimode beams to probe the sample and the other as a

reference to reduce the noise. A similar model can also be used to describe wave front distortion
measurements. The model is meant to be followed by a ¯rst experimental demonstration of such

enhanced measurement scheme.

Keywords: Quantum imaging; non-classical correlations; gradient-index.

1. Introduction

In recent years, quantum states of light have been proven successful in the

enhancement of a variety of measurement schemes,1,2 such as undetected photon

imaging,3 quantum illumination,4–6 super resolution,7,8 ghost imaging,9–14 interfer-

ometry15–18 and absorption imaging.2,19–21 In particular, a fundamental limit in the

accuracy of classical schemes is the Shot Noise Limit (SNL),22,23 that bounds

the uncertainty in the estimation of a parameter to scale as the inverse square root of
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the photons involved. Schemes that enable to surpass the SNL are of paramount

importance in settings, where the energy that can be used is limited, as it is the case,

for example, when dealing with biological samples24 that could be damaged by the

radiation. Sub-SNL measurements have been realized, using squeezed states of light

for interferometry,25,26 beam displacement measurements,27–29 particle tracking in

living systems30 and recently sub-SNL wide ¯eld absorption imaging has been

achieved20,31,32 using quantum correlated states. A state often used in such schemes is

the Twin Beam (TWB) state produced by the process of Parametric Down

Conversion (PDC)33,34 or four-wave mixing.35,36 In PDC, a laser pump interacts with

a nonlinear crystal creating, as a result, a pair of photons correlated both in position

and momentum. This state is particularly interesting not only because the use of

quantum correlations allows a reduction of the uncertainty of an estimation below

the SNL, but also because of the spatial multimode nature of the PDC process, that

automatically enables wide ¯eld imaging, meaning that a 2D spatial pro¯le can be

imaged with a single exposure.32 It can be expected that the TWB state, similarly as

it is in the case of absorption imaging, can be used to achieve sub-SNL measurements

of nonuniform refractive pro¯les and aim of this work is, in fact, to investigate the

improvements that the use of quantum correlations would bring to such measure-

ments. Classically, di®erent techniques are used to image a non uniform refractive

pro¯le of an object. Considering a beam interacting with the object, a de°ection of a

certain angle is produced, that can be analyzed using ray optics37 under suitable

assumptions, depending on the scheme considered. In particular, the Schilieren

con¯guration38 focuses on the imaging of the gradient of the refractive pro¯le rn

while in shadography38 the image formed is proportional tor2n. A common point for

those kind of schemes is that for each point of the object, the angle of de°ection

containing information on the refractive pro¯le is retrieved by measuring the change

in the intensity distribution at the detection plane, by means of a multipixel detector.

Fig. 1. Wide ¯eld imaging of a refractive pro¯le. A sample is illuminated by a spatial multimode beam. At

each position the beam is de°ected at a di®erent angle, altering the intensity distribution. In the dashed

shape the con¯guration in which the beam is correlated to another, used as reference, is pictured.
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In this paper we analyze the possible quantum advantage achievable in a scheme

where, similarly, the de°ection is estimated by a measurement of the intensity dis-

tribution, so that the uncertainty of the estimation depends on the statistics of the

detected photons. This problem is similar to the beam displacement problem ana-

lyzed in Ref. 28 where the entire beam is de°ected of a certain angle and it is detected

by a quadrant detector. The di®erence is that the structure causing the de°ection in

our case is more complex, in the sense that at each position of the sample incoming

light is de°ected at a di®erent angle, or no angle at all, as pictured in Fig. 1. The

object is considered to be illuminated by a spatially incoherent source with a certain

pattern, e.g. the TWB state. The results, after the interaction, are a measured in-

tensity distribution where de°ected and nonde°ected parts of the probe pattern sum

up in intensity at each pixels. Interference e®ects are not considered here given the

incoherent properties of the multimode source.

2. The Model

The analysis of the interaction of the beam with the object can be carried out from a

phenomenological point of view as depicted in Fig. 2(a).

In the simpli¯ed scheme pictured a single mode, labeled â goes through a region

with nonuniform refractive index, called an impurity, and, as a result, is de°ected

downwards of an angle �. In turn, at the detection plane close to the object, photons

will be detected in a shifted position. The detectors are positioned such that the one

labeled \1" intercepts the ¯rst mode, when unperturbed, while an adjacent detector

of the same size, labeled \2", receives photons only when there is a de°ection. The

de°ection is assumed small enough that the beam never exceeds the position of

detector 2 at detection. In Fig. 2(b) a second mode, labeled b̂ and considered inde-

pendent from the ¯rst mode, is added, so that detector 2 in this case collects photons

from b̂ but also part of the photons from â due to the de°ection. This last con¯gu-

ration mimics the situation one have in wide ¯eld imaging where the object can be

(a) (b)

Fig. 2. (a) De°ection of a single mode due to an impurity. A single mode, labeled â, interacts with a test
object with a gradient in the refractive index rn. As a result â is de°ected of an angle �. In turn this

de°ection will cause a shift in the detected position of the photons. (b) De°ected mode with disturbance.

The di®erence with the previous scheme is the presence of a second mode, labeled as b̂, and considered
independent from â. Due to the de°ection some photons from â will be detected in the same position as

photons from b̂.
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illuminated simultaneously by di®erent modes at di®erent positions. The following

analysis refers to this elementary scheme, but it can be generalized to the situation in

which a gradient is present all across the object, producing local de°ections.

We develop a quantum statistical model in which the de°ection in Fig. 2(b) is

represented as the result of a beam splitter (BS) acting on the mode â as showed in

Fig. 3(a). The BS is characterized by its transmission coe±cient � , the fraction of

transmitted photons. The angle of de°ection is then proportional to the re°ectance

1� � where the constant of proportionality depends on the particular spatial dis-

tribution of the mode. Estimating the angle of de°ection of Fig. 2.B is then equivalent

to the estimation of the coe±cient � in Scheme 3(a).

2.1. Direct scheme and SNL

Referring to the con¯guration of Fig. 3(a) the estimation of � can be carried out using

the estimator Ê

Ê ¼ n̂1 � n̂2

n̂1 þ n̂2

; ð1Þ

where n̂1 and n̂2 are the photon number operators detected from detectors 1 and 2,

respectively. The choice of this estimator, where the role of the denominator is to

attenuate the °uctuations, follows from the fact that it allows, under the condition of

small photon number °uctuations w.r.t. mean value, to reach the Ultimate Quantum

Limit, derived in Ref. 39, in the estimation of a BS parameter with a single input

beam, when the second mode b̂ is not considered.40 The estimator Ê is de¯ned using a

ratio of operators and his mean value can be found expanding Eq. (1), for small

°uctuations around the operator mean value, that at the zeroth order is

hÊi ¼ n̂1 � n̂2

n̂1 þ n̂2

� �
� hn̂1i � hn̂2i

hn̂1i þ hn̂2i
¼ ð2� � 1ÞNa �Nb

Na þNb

; ð2Þ

(a) Direct scheme (b) correlated scheme

Fig. 3. (a)Model of beam de°ection. Schematic representation of the situation of Fig. 2(b). The de°ection

of the beam is modeled with a BS of transmission 0 � � � 1, where 1� � is proportional to the angle of

de°ection �. (b) Correlated scheme. The scheme pictures a de°ection measurement. A correlate source is

used to produce pairs of correlated modes, â correlated to âc and b̂ to b̂c. â and b̂ probe the object, while

their respective correlated modes are used as reference.
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where Na ¼ hn̂ai ¼ hâ†âi and Nb ¼ hn̂bi ¼ hb̂ †b̂i are the mean number of photons in

modes â and b̂. All the mean values h�i are taken on the initial state of the ¯eld,

�a � �b. Those states will be speci¯ed by means of their photons statistics, and given

the physical con¯guration under analysis, from now on, we will consider �a and �b
equal, as the two modes are produced by the same source. An estimation of � can be

found solving Eq. (2), using the fact that Na and Nb can be considered parameters as

they can be determined with arbitrary accuracy in a preliminary characterization of

the experimental apparatus, in absence of the sample under test.

The variance h�2Êi can be obtained with the propagation of the uncertainty on

n̂1 and n̂2 and expressed in terms of the statistic of the input modes â and b̂.

From the well-known BS relations ât ¼
ffiffiffi
�

p
â þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þp
v̂ and âr ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þp
âþffiffiffi

�
p

v̂, the statistic of the transmitted and re°ected modes ât and âr is easily found to be

hn̂ti ¼ hâ †
t âti ¼ �Na; hn̂ri ¼ hâ †

r âri ¼ ð1� �ÞNa;

h�2n̂ti ¼ �Nað�F þ 1� �Þ; h�2n̂ri ¼ Nað1� �ÞðFð1� �Þ þ �Þ;
h�n̂t�n̂ri ¼ �ð1� �ÞNaðF � 1Þ;

ð3Þ

The Fano factor41 F ¼ h�2n̂i=hn̂i was introduced to characterize the statistic of the

input state. States with F < 1, i.e. characterized by sub-Poissonian °uctuation, are

considered nonclassical states of light.42 The statistic of n̂1 follows directly from rela-

tion in Eq. (3) since from scheme in Fig. 3(a) it coincides with n̂t. To determine the

statistic of n̂2, we use the fact that â and b̂ are independent so that we have

hn̂2i ¼ hn̂bi þ hn̂ri;
h�n̂1�n̂2i ¼ h�n̂t�n̂ri;

h�2n̂2i ¼ h�2n̂bi þ h�2n̂ri:
ð4Þ

So that for n̂2, we get

hn̂2i ¼ Nb þ ð1� �ÞNa;

h�2n̂2i ¼ FNb þ ð1� �Þ2FNa þ �ð1� �ÞNa;

h�n̂1�n̂2i ¼ �ð1� �ÞðFNa �NaÞ:
ð5Þ

Using Eqs. (3) and (5), we can propagate the uncertainty from Eq. (1). Assuming

Na ¼ Nb ¼ N , we have

h�2Êi � F� 2

2N
þ �ð1� �Þ

N
: ð6Þ

This uncertainty can be propagated to the parameter � as

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2Êi

q
j@hÊi=@� j : ð7Þ

Quantum enhanced imaging of nonuniform refractive pro¯les
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So that

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� 2

2N
þ �ð1� �Þ

N

r
: ð8Þ

The minimum °uctuation that can be achieved with \classical" states is the one

obtained with coherent states, with F ¼ 1, setting the SNL for this scheme:

��SNL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

2N
þ �ð1� �Þ

N

r
: ð9Þ

2.2. Correlation based scheme

In order to take advantage of quantum correlations, we propose another scheme,

depicted in Fig. 3(b). A source is used to produce spatially separated pairs of cor-

related modes. In Fig. 3(b), the modes testing the object, â and b̂, are correlated to

the modes âc and b̂c, respectively, that act as a reference. The aim of this scheme is to

exploit correlations in the photon number to improve the accuracy over the direct

scheme. The degree of correlation, for a pair of generic modes î and ĵ, is expressed by

the noise reduction factor31� de¯ned as

� ¼ h�2ðn̂i � n̂jÞi
hn̂i þ n̂ji

: ð10Þ

With this con¯guration, the parameter � can be computed using the estimator ÊC :

ÊC ¼ n̂1 � ðn̂2 � n̂ c
2Þ

n̂ c
1

: ð11Þ

The choice of this estimator is arbitrary but motivated by the fact that the corre-

lation of n̂2 and n̂ c
2 should allow to reduce the °uctuation of the bracket term at the

numerator, meanwhile normalizing by n̂ c
1 compensates for the °uctuation of n̂1.

For small °uctuations in photon numbers, the mean value can be approximated,

as done before as

hÊCi �
hn̂1 � ðn̂2 � n̂ c

2Þi
hn̂ c

1i
¼ 2� � 1: ð12Þ

Where N c
a ¼ Na ¼ Nb ¼ N c

b was assumed, which is true for photons in the TWB

state if balanced losses are considered. The calculation of the uncertainty is similar to

the one showed in Sec. 2.2 and will not be reported. The result is

��C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þ

N
þ ð2� � 1Þ2�

4N
þ �

2N

r
; ð13Þ

that depends only on the measured mean number of photons N in the reference beam

and on the measured noise reduction factor in absence of the sample's perturbation.
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3. Results and Discussion

From Eqs. (9) and (13), a comparison of the performance in the estimation with

di®erent input states can be made. In particular, for the direct scheme of Sec. 2.1, we

consider each mode of the multimode beam to be, alternatively, in one of the fol-

lowing states

. The Fock state, eigenstate of the photon number operator of the ¯eld so that

FFock ¼ 0

. The coherent state, eigenstate of the annihilation operator with a Poissonian

photon number distribution, hence Fcoh ¼ 1

. The thermal state, a mixed state characterized by the Bose–Einstein distribution at

thermal equilibrium, P ðnÞ ¼ Nn=ð1þNÞðnþ1Þ,43 having then Fth ¼ 1þN , N

being the main number of photons.

The correlation based scheme will be analyzed in the case of the TWB state

j iTWB ¼
X
n

cðnÞjnikt;!jni�kt;�!; ð14Þ

where kt and ! are the transverse momentum and frequency of the mode and

jcðnÞj2 is a thermal like distribution. From (14), it is clear that the quantum nature

of the state resides in its entanglement, as tracing out either one of the modes

would give a thermal statistic for the other. Moreover, it is easy to see that for this

state, due to the perfect photon number correlation, the noise reduction factor

is �TWB ¼ 0.

In Fig. 4(a), the uncertainty�� on the estimation is plotted against the parameter

� in the case of each of the states discussed. The curves are obtained by simply

substituting the Fano factor of the di®erent states considered in Eq. (9), for the direct

scheme, and � ¼ 0 in (13) for the correlated case. The minimum uncertainty

attainable in the estimation of a BS parameter39 is reached, for every value of � by

both the TWB and the Fock state. It is not surprising that the Fock state reaches the

lower bound to the uncertainty, since the estimation is based on photon number

measurement, for which this state has no noise. When lossless channels are consid-

ered, the use of quantum correlations allows to erase the quantum noise present in the

probe beam, by exploiting the information on the photon number °uctuation mea-

sured in the reference beam, reproducing the situation in which the ¯eld is prepared

in a Fock state. The coherent state, plotted with a dotted line, is a useful reference for

the performance of the TWB state, since as mentioned before, the former represents

the SNL and so the limit achievable with classical states. The advantage of TWB

over the SNL gets more evident in the region of high � , corresponding to low

de°ections. The thermal state is, as expected, the worst one and is reported to show

the disadvantage in the use of of light modes in noisier states unless quantum cor-

relations are used.

Quantum enhanced imaging of nonuniform refractive pro¯les
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Up until now, possible photon losses have not been considered, although they are

unavoidable in any real optical scheme. Since optical losses are random processes,

that add a certain amount of noise, sub-Poissonian behavior and quantum correla-

tions are strongly a®ected by them. The Fano factor and the NRFmeasured in case of

a fraction 0 � 1� � � 1 of photons lost in the channel are

F� ¼ �F þ 1� �; �� ¼ ��þ 1� �; ð15Þ

where for �� equal losses on the correlated channels have been assumed.

In Fig. 4(b) the uncertainty is reported in the case of a high, but not perfect,

e±ciency, � ¼ 0:9, evaluated by substituting expressions (15) into Eqs. (9) and (13).

In this scenario, the performance of the TWB state does not coincide anymore with

the one of the Fock states but it becomes slightly worse. An interesting feature is that

the uncertainty of the TWB estimation does not approach zero as � ! 0 and as a

consequence, the TWB performs worst than any other con¯guration in the high

de°ections region. This is a consequence of the choice of the estimator in Eq. (11), and

can be eliminated with a di®erent one. However the advantage of this estimator over

other tested estimators, and the reason why it has been chosen here, is that it allows

to improve the sensitivity for small de°ections, the one we are more interested in. In

this region, the TWB state approaches the result of the Fock state, even in the

presence of losses, and gives a sensible improvement over the SNL.

Finally, in Fig. 5, we report the maximum value of the detected noise reduction

factor, �max, which still provides an advantage over the SNL, i.e.

��Cð�maxÞ < ��SNL. It is interesting to notice how, the higher the de°ection (smaller

(a) (b)

Fig. 4. (a) Uncertainty on the estimation of the BS parameter 0 < � < 1, modeling a beam de°ection.

Referring to Scheme 3(a) the input states are Fock (solid line), coherent (dotted line) and thermal state
(double dashed line). The TWB state result, the dashed line coinciding with the Fock state, refers to

Scheme 3(b). (b) Uncertainty on the estimation of the BS parameter 0 < � < 1, modeling a beam de-

°ection, with e±ciency � ¼ 0:9. The uncertainty of the measurement Scheme 3(a) is plotted in the case of

optical e±ciency � ¼ 0:9, meaning that a fraction 1� � of the initial number of photons are lost. The input
states considered are Fock (solid line), coherent (dotted line) and thermal (double dashed line) state. The

TWB state result, plotted with the dashed line, refers to Scheme 3(b), where the e±ciency is considered

� ¼ 0:9 in both the probe and reference channel.
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values of �), the stronger the correlation has to be to grant an advantage over the

classical limit. Moreover even in the limiting case of no de°ection, � ¼ 1, a NRF � 0:7

is still required, a value well below the limit achievable by classical correlations

�class � 1.

4. Conclusions

In this work, a simple quantum model describing the measurement of a refractive

pro¯le, based on the change of the intensity distribution of a beam after the inter-

action with a sample, has been elaborated to investigate a possible quantum

enhancement in the sensitivity. The de°ection caused on a single mode of the spa-

tially multimode beam interacting with the test object were modeled using a BS

transformation with transmission coe±cient � , where the angle of de°ection � is

proportional to 1� � . A direct measurement scheme was compared to one based on

the use of quantum correlations. In particular, we found that the TWB state, a state

characterized by entanglement in photon number between pairs of spatio-temporal

modes, overcomes the SNL both in the ideal lossless case, reported in Fig. 4(a) and in

the presence of losses, shown in Fig. 4(b). Moreover, we have shown that only a

correlation level well above the classical bound (noise reduction factor �max < 0:7)

allows to overcome the SNL, as reported in Fig. 5.

There results show the possibility to reach a quantum enhancement for wide ¯eld

imaging of refractive pro¯les inducing an intensity perturbation in the near ¯eld,

using a TWB con¯guration. The analysis performed in this work is meant to be

followed by a wide ¯eld experimental realization of the correlation based scheme with

the TWB state. Twin beams are, in fact, currently routinely generated in quantum

optics laboratories, and they have already been used for sub-shot noise imaging of

absorption pro¯les. Thus, the scheme suggested in this work for refractive pro¯le

measurements is feasible with the current technology.

Fig. 5. NRF needed to beat the SNL. The plot represents the maximum value of noise reduction factor �

that a correlated state, used in Scheme 3(b), can have in order to have an advantage over the SNL 9.

Quantum enhanced imaging of nonuniform refractive pro¯les

1941010-9

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
9.

17
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

51
.3

8.
13

4.
19

9 
on

 0
3/

23
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Realizing sub-SNL wide ¯eld imaging is especially important when there is a limit

on the energy that can be used to probe samples. For this reason, sub-SNL imaging of

refractive pro¯les would have useful application, for example, in the analysis of quasi

transparent biological sample, giving complementary information to the one

obtained using other measurements.
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