50 research outputs found

    GOmotif: A web server for investigating the biological role of protein sequence motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many proteins contain conserved sequence patterns (motifs) that contribute to their functionality. The process of experimentally identifying and validating novel protein motifs can be difficult, expensive, and time consuming. A means for helping to identify in advance the possible function of a novel motif is important to test hypotheses concerning the biological relevance of these motifs, thus reducing experimental trial-and-error.</p> <p>Results</p> <p>GOmotif accepts PROSITE and regular expression formatted motifs as input and searches a Gene Ontology annotated protein database using motif search tools. The search returns the set of proteins containing matching motifs and their associated Gene Ontology terms. These results are presented as: 1) a hierarchical, navigable tree separated into the three Gene Ontology biological domains - biological process, cellular component, and molecular function; 2) corresponding pie charts indicating raw and statistically adjusted distributions of the results, and 3) an interactive graphical network view depicting the location of the results in the Gene Ontology.</p> <p>Conclusions</p> <p>GOmotif is a web-based tool designed to assist researchers in investigating the biological role of novel protein motifs. GOmotif can be freely accessed at <url>http://www.gomotif.ca</url></p

    Bioactivity Determination of Native and Variant Forms of Therapeutic Interferons

    Get PDF
    The traditional antiviral assays for the determination of interferon potency are reported to have considerable variability between and within assays. Although several reporter gene assays based on interferon-inducible promoter activities have been reported, data from comprehensive validation studies are lacking and few studies have been conducted to analyze the variant forms of interferons, which could have undesirable clinical implications. Here, a reporter gene assay employing a HEK293 cell line stably transfected with luciferase gene under the control of interferon-stimulated response element promoter was developed and validated. The assay was found to be more sensitive, with a larger detection range than the antiviral assay. Several cytokines tested did not interfere with the test, suggesting the assay possesses a certain degree of selectivity. Moreover, the robustness of the assay was demonstrated by minimal variations in the results generated by different analysts and cell passage number (up to 52 passages). Finally, the method was employed to analyze several interferon variants (interferon-α 2a) and we found that the aggregated form has completely lost its potency; while a modest loss of bioactivity in oxidized interferon was observed (approx. 23%), the deamidated form essentially retained its activity

    Aurintricarboxylic Acid Is a Potent Inhibitor of Influenza A and B Virus Neuraminidases

    Get PDF
    Background: Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. Methodology/Principal Findings: We investigated the potential of aurintricarboxylic acid (ATA), a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an antiinfluenza drug that inhibits M2-ion channels of influenza A virus. Conclusions/Significance: Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting th

    COVID-19 causes record decline in global CO2 emissions

    Get PDF
    The considerable cessation of human activities during the COVID-19 pandemic has affected global energy use and CO2 emissions. Here we show the unprecedented decrease in global fossil CO2 emissions from January to April 2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when compared with the period last year. In addition other emerging estimates of COVID impacts based on monthly energy supply or estimated parameters, this study contributes to another step that constructed the near-real-time daily CO2 emission inventories based on activity from power generation (for 29 countries), industry (for 73 countries), road transportation (for 406 cities), aviation and maritime transportation and commercial and residential sectors emissions (for 206 countries). The estimates distinguished the decline of CO2 due to COVID-19 from the daily, weekly and seasonal variations as well as the holiday events. The COVID-related decreases in CO2 emissions in road transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to 2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%), residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2, -15%). Regionally, decreases in China were the largest and earliest (234.5 Mt CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S. (162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional nitrogen oxides concentrations observed by satellites and ground-based networks, but the calculated signal of emissions decreases (about 1Gt CO2) will have little impacts (less than 0.13ppm by April 30, 2020) on the overserved global CO2 concertation. However, with observed fast CO2 recovery in China and partial re-opening globally, our findings suggest the longer-term effects on CO2 emissions are unknown and should be carefully monitored using multiple measures

    Near-real-time monitoring of global CO₂ emissions reveals the effects of the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially

    Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion

    Get PDF
    The SARS coronavirus (SARS-CoV) spike is the largest known viral spike molecule, and shares a similar function with all class 1 viral fusion proteins. Previous structural studies of membrane fusion proteins have largely used crystallography of static molecular fragments, in isolation of their transmembrane domains. In this study we have produced purified, irradiated SARS-CoV virions that retain their morphology, and are fusogenic in cell culture. We used cryo-electron microscopy and image processing to investigate conformational changes that occur in the entire spike of intact virions when they bind to the viral receptor, angiotensin-converting enzyme 2 (ACE2). We have shown that ACE2 binding results in structural changes that appear to be the initial step in viral membrane fusion, and precisely localized the receptor-binding and fusion core domains within the entire spike. Furthermore, our results show that receptor binding and subsequent membrane fusion are distinct steps, and that each spike can bind up to three ACE2 molecules. The SARS-CoV spike provides an ideal model system to study receptor binding and membrane fusion in the native state, employing cryo-electron microscopy and single-particle image analysis
    corecore