13 research outputs found

    Synthesis, Self-Assembly and Photoresponsive Behavior of Liquid Crystals Based on Azobenzene

    No full text
    A new amphiphilic surfactant (C4-Azo-C5-HDA) was formed by liquid crystals (LCs) based on azobenzene, whose structures were characterized by 1H-NMR spectroscopy. The reversible hydrogelation upon changes in temperature and light exposure was also studied. Under the irradiation of UV light, the trans-isomer of C4-Azo-C5-HDA rapidly photoisomerized to the cis-isomer, resulting in rapid disruption of the gel. The thermotropic liquid crystal behavior of the gelator was investigated via Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopy (POM). The biocompatibility experiment of multi-stimulus response of the liquid crystal provides a potential driving force for the development of biomaterials

    Synthesis, Self-Assembly and Photoresponsive Behavior of Liquid Crystals Based on Azobenzene

    No full text
    A new amphiphilic surfactant (C4-Azo-C5-HDA) was formed by liquid crystals (LCs) based on azobenzene, whose structures were characterized by 1H-NMR spectroscopy. The reversible hydrogelation upon changes in temperature and light exposure was also studied. Under the irradiation of UV light, the trans-isomer of C4-Azo-C5-HDA rapidly photoisomerized to the cis-isomer, resulting in rapid disruption of the gel. The thermotropic liquid crystal behavior of the gelator was investigated via Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopy (POM). The biocompatibility experiment of multi-stimulus response of the liquid crystal provides a potential driving force for the development of biomaterials

    Azobenzene Based Photo-Responsive Hydrogel: Synthesis, Self-Assembly, and Antimicrobial Activity

    No full text
    A new azobenzene-based symmetric amphiphile was synthesized and characterized using 1H NMR spectroscopy. Its self-assembly behavior as well as photo-responsive behavior in its solution and gel states were investigated. Such a compound can self-assemble into fiber mesophases in water solvent. After irradiation of the gels with UV light, the trans isomer of the compound rapidly photoisomerized to the cis isomer, which resulted in a rapid destruction of the gel. High temperature also caused a rapid drop in viscosity. To verify the antimicrobial activity of the hydrogel, live and death assays of human fibroblasts L929 properties were used for in vitro cell viability studies. The compound was converted to the terminal tertiary amine in a quaternary ammonium salt molecule by using hydrochloric acid. This azobenzene quaternary ammonium salt has a relatively better antimicrobial effect biocidal activity that was demonstrated when challenged against Escherichia coli on in vitro conditions

    Synthesis and Characterization of Photo-Responsive Thermotropic Liquid Crystals Based on Azobenzene

    No full text
    A series of new thermotropic liquid crystals (LCs) containing azobenzene units was synthesized. The structures of the compounds were characterized by means of NMR and FTIR spectroscopy. Their mesomorphic behaviors were investigated via differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Based on the POM and DSC measurements, the optical properties of the Razo-ester were tested using UV-vis spectroscopy. The azobenzene side chain displayed a strong ability to influence the formation of thermotropic LCs

    Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology.

    No full text
    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it's expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints

    Rapid Simultaneous Analysis of 17 Haloacetic Acids and Related Halogenated Water Contaminants by High-Performance Ion Chromatography-Tandem Mass Spectrometry

    No full text
    Haloacetic acids (HAAs), which include chloroacetic acids, bromoacetic acids, and emerging iodoacetic acids, are toxic water disinfection byproducts. General screening methodology is lacking for simultaneously monitoring chloro-, bromo-, and iodoacetic acids. In this study, a rapid and sensitive high-performance ion chromatography-tandem mass spectrometry method for simultaneous determination of chloro-, bromo-, and iodo- acetic acids and related halogenated contaminants including bromate, bromide, iodate, and iodide was developed to directly analyze water samples after filtration, eliminating the need for preconcentration, and chemical derivatization. The resulting method was validated in both untreated and treated water matrices including tap water, bottled water, swimming pool water, and both source water and drinking water from a drinking water treatment facility to demonstrate application potential. Satisfactory accuracies and precisions were obtained for all types of tested samples. The detection limits of this newly developed method were lower or comparable with similar techniques without the need for extensive sample treatment requirement and it includes all HAAs and other halogenated compounds. This provides a powerful methodology to water facilities for routine water quality monitoring and related water research, especially for the emerging iodoacetic acids

    Evaluation of Thirteen Haloacetic Acids and Ten Trihalomethanes Formation by Peracetic Acid and Chlorine Drinking Water Disinfection

    No full text
    Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H2O2) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H2O2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H2O2, no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H2O2, low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment

    Simultaneous Removal of Ammonia and N-Nitrosamine Precursors from High Ammonia Water by Zeolite and Powdered Activated Carbon

    No full text
    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process
    corecore