5 research outputs found

    The metabolic growth limitations of petite cells lacking the mitochondrial genome.

    Get PDF
    Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. ‘Petite yeasts’, characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.We thank our laboratory members and J. Bähler for critical discussion and comments on the manuscript, and C. Kilian for technical support. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134) and the Wellcome Trust (FC001134), and received specific funding from the European Research Council (StG 260809 and SYG 951475) and the Wellcome Trust (IA 200829/Z/16/Z), as well as the FWF (Austria) for project P26713 (to M.B.) and a Swiss National Science Foundation Postdoc Mobility fellowship (191052 to J.H.)

    Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers

    No full text
    Aberrations in genes coding for subunits of the BRG1/BRM associated factor (BAF) chromatin remodeling complexes are highly abundant in human cancers. Currently, it is not understood how these mostly loss-of-function mutations contribute to cancer development and how they can be targeted therapeutically. The cancer-type-specific occurrence patterns of certain subunit mutations suggest subunit-specific effects on BAF complex function, possibly by the formation of aberrant residual complexes. Here, we systematically characterize the effects of individual subunit loss on complex composition, chromatin accessibility and gene expression in a panel of knockout cell lines deficient for 22 BAF subunits. We observe strong, specific and sometimes discordant alterations dependent on the targeted subunit and show that these explain intracomplex codependencies, including the synthetic lethal interactions SMARCA4-ARID2, SMARCA4-ACTB and SMARCC1-SMARCC2. These data provide insights into the role of different BAF subcomplexes in genome-wide chromatin organization and suggest approaches to therapeutically target BAF-mutant cancers
    corecore