18 research outputs found

    Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis paper reports on a validation study of CFD models used to predict the effect of PCM clay boards on the control of indoor environments, in ventilated and non-ventilated situations. Unlike multi-zonal models, CFD is important in situations where localised properties are essential such as in buildings with complex and large geometries. The employed phase change model considers temperature/enthalpy hysteresis and varying enthalpy-temperature characteristics to more accurately simulate the phase change behaviour of the PCM boards compared to the standard default modelling approach in the commercial CFD codes. Successful validation was obtained with a mean error of 1.0 K relative to experimental data, and the results show that in addition to providing satisfactory quantitative results, CFD also provides qualitative results which are useful in the effective design of indoor thermal environment control systems utilising PCM. These results include: i) temperature and air flow distribution within the space resulting from the use of PCM boards and different night ventilation rates; ii) the fraction of PCM experiencing phase change and is effective in the control of the indoor thermal environment, enabling optimisation of the location of the boards; and iii) the energy impact of PCM boards and adequate ventilation configurations for effective night charging.This work was funded through sponsorship from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No: EP/H004181/1

    Heat kernel regularization of the effective action for stochastic reaction-diffusion equations

    Full text link
    The presence of fluctuations and non-linear interactions can lead to scale dependence in the parameters appearing in stochastic differential equations. Stochastic dynamics can be formulated in terms of functional integrals. In this paper we apply the heat kernel method to study the short distance renormalizability of a stochastic (polynomial) reaction-diffusion equation with real additive noise. We calculate the one-loop {\emph{effective action}} and its ultraviolet scale dependent divergences. We show that for white noise a polynomial reaction-diffusion equation is one-loop {\emph{finite}} in d=0d=0 and d=1d=1, and is one-loop renormalizable in d=2d=2 and d=3d=3 space dimensions. We obtain the one-loop renormalization group equations and find they run with scale only in d=2d=2.Comment: 21 pages, uses ReV-TeX 3.

    Mum or bub? Which influences breastfeeding loyalty

    Get PDF
    The need for social marketing research in the area of breastfeeding is highlighted by the failure of campaigns to increase breastfeeding rates over the past two decades in developed countries. This is despite evidence of the health benefits of longer breastfeeding duration to both baby and mother, and the high levels of expenditure on these campaigns. Whilst past campaign approaches typically focus on baby-oriented factors, breastfeeding is a complex behaviour that for many women involves barriers that influence their commitment to continued breastfeeding. Using social marketing, this research investigates the role of mother-centred factors on loyalty to breastfeeding. A sample of 405 Australian women completed an online survey. The data were analysed using structural equation modelling, which revealed that mother-oriented, rather than baby-oriented, factors influence attitudinal and behavioural loyalty to breastfeeding
    corecore