5 research outputs found

    Altered Brain Fraction Amplitude of Low Frequency Fluctuation at Resting State in Patients With Early Left and Right Bell’s Palsy: Do They Have Differences?

    Get PDF
    Purpose: Bell’s palsy refers to acute idiopathic unilateral facial nerve palsy. It is a common disorder of the main motor pathway to the facial muscles. This study aimed to investigate the abnormal fraction amplitude of low frequency fluctuation (fALFF) of the brain in patients with early left and right Bell’s palsy.Materials and Methods: Sixty-seven patients (left 33, right 34) and 37 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging (R-fMRI) examination. The fALFF values were measured from all subjects and were compared among the left palsy, right palsy, and control groups. Then, correlations between the Toronto Facial Grading System (TFGS) scores of the patients and the fALFF values of abnormal brain regions were analyzed.Results: Significant group differences in fALFF values among the three groups were observed mainly in the cerebral cortical, subcortical, and deep gray matter regions. Compared with the right Bell’s palsy group, the left Bell’s palsy group showed significantly decreased fALFF values in the left temporal pole of the superior temporal gyrus (TPOsup), right supramarginal, left and right middle cingulate cortex (MCC), left superior frontal gyrus (SFG), and left precentral gyrus (PreCG), and increased fALFF values were observed in the right SFG and PreCG. Furthermore, altered fALFF values correlated positively with the TFGS scores in the left superior TPO, bilateral MCC, and right PreCG, and correlated negatively with the TFGS scores in the right SFG of the left Bell’s palsy group. Altered fALFF values correlated positively with the TFGS scores in the bilateral MCC and right PreCG and correlated negatively with the TFGS scores in the left superior TPO and SFG of the right Bell’s palsy group.Conclusion: Regulatory mechanisms seem to differ between patients with left and right early Bell’s palsy. The severity of the disease is associated with these functional alterations

    Morphologic characteristics of severe basilar artery atherosclerotic stenosis on 3D high-resolution MRI

    No full text
    Abstract Background Two-dimensional high-resolution MRI (2D HRMRI) faces many technical challenges for fully assessing morphologic characteristics of inherent tortuous basilar arteries. Our aim was to investigate remodeling mechanisms and plaque distribution in symptomatic patients with basilar artery stenosis on three-dimensional (3D) HRMRI. Methods Forty-six consecutive patients with symptomatic basilar artery atherosclerotic stenosis on MRA (70–99%) were enrolled. The remodeling index (RI) was the ratio of vessel area at the maximal-lumen-narrowing (MLN) site to reference vessel area. RI ≥ 1.05 was defined as positive remodeling (PR), RI ≤ 0.95 as negative remodeling (NR), and 0.95 < RI < 1.05 as intermediate remodeling (IR). The remodeling patterns were divided into two groups (PR and non-PR [NR and IR]). The cross-sectional and longitudinal distribution of BA plaques were evaluated. Results Two patients were excluded because of poor-quality images. Images of 44 patients were available for measurements. PR was found in 23 (52.3%) patients, and non-PR in 21 (47.7%) patients. At the MLN sites, vessel area, wall area, plaque size and percentage of plaque burden of PR group were significantly greater than non-PR group (p < .001). Most plaques (90.9%) of the 44 patients were located at the dorsal, left and right walls. For the longitudinal distribution of plaque, 8 (18.2%) and 36 (81.8%) plaques were located in BA proximal and distal to AICA, respectively. Most plaques (68.2%) were eccentrically distributed. Conclusions 3D HRMRI with postprocessing multiple planar reconstruction is able to evaluate the remodeling pattern and plaque distribution of basilar artery atherosclerotic stenosis, which might be used to guide intracranial intervention

    Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates with Decreased Cognitive Function in Alzheimer’s Disease

    No full text
    The excessive accumulation of iron in deep gray structures is an important pathological characteristic in patients with Alzheimer’s disease (AD). Quantitative susceptibility mapping (QSM) is more specific than other imaging-based iron measurement modalities and allows noninvasive assessment of tissue magnetic susceptibility, which has been shown to correlate well with brain iron levels. This study aimed to investigate the correlations between the magnetic susceptibility values of deep gray matter nuclei and the cognitive functions assessed by mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) in patients with mild and moderate AD. Thirty subjects with mild and moderate AD and 30 age- and sex-matched healthy controls were scanned with a 3.0 T magnetic resonance imaging (MRI) scanner. The magnetic susceptibilities of the regions of interest (ROIs), including caudate nucleus (Cd), putamen (Pt), globus pallidus (Gp), thalamus (Th), red nucleus (Rn), substantia nigra (Sn), and dentate nucleus (Dn), were quantified by QSM. We found that the susceptibility values of the bilateral Cd and Pt were significantly higher in AD patients than the controls (<i>P</i> < 0.05). In contrast, bilateral Rn had significantly lower susceptibility values in AD than the controls. Regardless of gender and age, the increase of magnetic susceptibility in the left Cd was significantly correlated with the decrease of MMSE scores and MoCA scores (<i>P</i> < 0.05). Our study indicated that magnetic susceptibility value of left Cd could be potentially used as a biomarker of disease severity in mild and moderate AD
    corecore