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Purpose: Bell’s palsy refers to acute idiopathic unilateral facial nerve palsy. It is a
common disorder of the main motor pathway to the facial muscles. This study aimed to
investigate the abnormal fraction amplitude of low frequency fluctuation (fALFF) of the
brain in patients with early left and right Bell’s palsy.

Materials and Methods: Sixty-seven patients (left 33, right 34) and 37 age- and
sex-matched healthy controls underwent resting-state functional magnetic resonance
imaging (R-fMRI) examination. The fALFF values were measured from all subjects and
were compared among the left palsy, right palsy, and control groups. Then, correlations
between the Toronto Facial Grading System (TFGS) scores of the patients and the fALFF
values of abnormal brain regions were analyzed.

Results: Significant group differences in fALFF values among the three groups were
observed mainly in the cerebral cortical, subcortical, and deep gray matter regions.
Compared with the right Bell’s palsy group, the left Bell’s palsy group showed
significantly decreased fALFF values in the left temporal pole of the superior temporal
gyrus (TPOsup), right supramarginal, left and right middle cingulate cortex (MCC), left
superior frontal gyrus (SFG), and left precentral gyrus (PreCG), and increased fALFF
values were observed in the right SFG and PreCG. Furthermore, altered fALFF values
correlated positively with the TFGS scores in the left superior TPO, bilateral MCC, and
right PreCG, and correlated negatively with the TFGS scores in the right SFG of the left
Bell’s palsy group. Altered fALFF values correlated positively with the TFGS scores in the
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bilateral MCC and right PreCG and correlated negatively with the TFGS scores in the
left superior TPO and SFG of the right Bell’s palsy group.

Conclusion: Regulatory mechanisms seem to differ between patients with left and
right early Bell’s palsy. The severity of the disease is associated with these functional
alterations.

Keywords: fraction amplitude of low frequency fluctuation, amplitude of low frequency fluctuation, Bell’s palsy,
rest-fMRI, Toronto Facial Grading System

INTRODUCTION

Bell’s palsy refers to acute idiopathic unilateral facial nerve palsy.
It is a common disorder of the main motor pathway to the
facial muscles (Holland and Weiner, 2004; Basić-Kes et al., 2013).
The facial nerve is involved in controlling facial symmetry,
facial expressions, movements, and other functions (Spencer and
Irving, 2016; Hussain et al., 2017). Thus, Bell’s palsy can result in
considerable psychological impact on patients. Extensive research
on brain function reorganization in this condition is needed
to understand the mechanisms of functional integration within
the cerebral cortex (Gupta et al., 2013; Portelinha et al., 2014).
Furthermore, investigation of patients with different-sided Bell’s
palsy at the early stage could facilitate insight into differences
in the mechanisms involved in functional integration and may
provide a basis for implementation of suitable treatment as early
as possible.

As a new advanced technique, functional magnetic resonance
imaging (fMRI) has been widely used in evaluating many diseases
including Bell’s palsy (Hillman, 2014; Buchbinder, 2016). These
previous studies were mainly task-based fMRI studies, and found
that some cortical functional activities are interrupted at the
early stages in patients with Bell’s palsy. Motor integration is
increased, and functional motor integration mainly occurs in the
hemisphere contralateral to the paralyzed side (Barkhof et al.,
2014; He et al., 2014; Zacà et al., 2014). With the gradual recovery
of facial nerve function, the functional activities in the related
brain regions also gradually recover to the normal level (Rijntjes
et al., 1997; Bitter et al., 2011; Wu et al., 2014). fMRI in the
resting state (R-fMRI) is less demanding for patient cooperation
than that during complex activation tasks (Buxton, 2013; Conklin
et al., 2014; Fovet et al., 2015). However, research using R-fMRI
in patients with Bell’s palsy is still in its infancy (Klingner et al.,
2011, 2012). R-fMRI provides useful information for exploring
functional brain changes and interpretation of task-based fMRI.
Slow fluctuation in activity is a fundamental feature of the resting
brain (Smit et al., 2010; Buendia et al., 2016), and is also called
low frequency oscillation (LFO).

The amplitude of low-frequency fluctuation (ALFF) is one
of the quantitative methods that is often used in R-fMRI (Zang
et al., 2007). ALFF is defined as the total power within the
low frequency range (from 0.01 to 0.1 Hz) and indicates the
strength of LFOs (Zang et al., 2007). The fractional ALFF (fALFF)
is a methodological improvement of ALFF; it is defined as
the power within the low-frequency range divided by the total
power in the entire detectable frequency range. Thus, fALFF

indicates the relative contribution of LFOs to the whole frequency
range (Zou et al., 2008). Both ALFF and fALFF can reflect
the spontaneous activity of the brain from the perspective of
brain energy metabolism (Orringer et al., 2012; Buckner et al.,
2013). fALFF is more sensitive and specific than ALFF at low
frequencies and can more accurately reflect the strength of
spontaneous activity in the brain (Zou et al., 2008; Jing et al.,
2013). Early studies using fALFF found that patients with Bell’s
palsy showed significant fALFF decreases in the contralateral
primary somatosensory cortex and the primary motor cortex.
However, for patients with early Bell’s palsy, it is unclear whether
there are bilateral differences in abnormal functional activities.
Therefore, we used fALFF to evaluate the functional alterations
in patients with early Bell’s palsy in order to identify abnormal
brain functional activities and to identify the difference in altered
brain regions between patients with left and right Bell’s palsy.

In this study, we hypothesized that patients with left or right
Bell’s palsy at the early stage would have abnormal fALFF in
some brain areas. Moreover, since the Toronto Facial Grading
System (TFGS) (Ahrens et al., 1999; Kayhan et al., 2000) plays an
important role in assessment of facial nerve damage and inability,
we also hypothesized that the TFGS would be associated with
fALFF alterations. To test our hypothesis, the resting-state fALFF
of patients with early Bell’s palsy were investigated and compared
with those in healthy controls. Additionally, we analyzed the
correlation between fALFF values and clinical severities in the left
and right palsy groups.

MATERIALS AND METHODS

Subjects
Sixty-seven patients were enrolled from December 2015 to
May 2017 in our hospital. Bell’s palsy was diagnosed by two
experienced neurologists using the TFGS. The patients were
divided into the left facial paralysis group (33 cases, 12 men
and 21 women, age 48.11 ± 13.27 years) and the right
facial paralysis group (34 cases, 13 men and 21 women, age
47.27 ± 12.96 years). The inclusion criteria were: (1) adult
patients with first-ever idiopathic unilateral facial nerve palsy (the
diagnosis was confirmed by the two neurologists), (2) onset time
of 2-7 days, (3) no other brain and psychiatric diseases, no use
of psychotropic drugs; and (4) being right-handed. Thirty-seven
healthy controls (14 men and 23 women, age 46.05 ± 13.65 years)
were recruited from postgraduate students, hospital staff, and by
advertisement. The inclusion criteria for healthy controls were:
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(1) absence of systemic diseases and neurological symptoms and
signs; (2) absence of a family history of neurological diseases; (3)
normal head MRI examination; (4) TFGS scores of 100 points;
(5) being right-handed. The study was approved by the Ethics
Committee of our hospital, and written informed consent was
obtained from each participant.

MRI Data Acquisition
Participants were instructed to rest in a supine position with eyes
closed and to breathe calmly, with the head fixed to minimize
head movement. Participants were asked not to think and to
remain awake, Rubber earplugs were used to reduce noise. A 3.0 T
MR scanner (GE Healthcare, Discovery MR750, Milwaukee, WI,
United States) with a supporting head quadrature coil was used
for MRI. The scan protocol included: (1) scout images; (2) T2-
weighted imaging (T2WI); (3) resting state blood oxygen-level
dependent-fMRI with single-shot gradient recalled echo-planar
imaging sequence [parameters were: slice thickness = 3.5 mm,
slice spacing = 0.7 mm, repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, flip angle = 90◦, matrix = 64 × 64,
field of view (FOV) = 240 mm × 240 mm, and number of
excitations (NEX) = 1, 34 slices and 240 phases]; (4) 3D T1-
weighted imaging (T1WI) with three-dimensional fast spoiled
gradient-echo sequences (3D FSPGR) (Scanning parameters:
slice thickness = 1.0 mm, TR = 6.7 ms, TE = Min Full, acquisition
matrix = 256 × 256, FOV = 256 mm × 256 mm, and NEX = 1).

Data Pre-processing and fALFF
Calculation
Data were preprocessed with the Data Processing Assistant
for Resting-State fMRI (DPARSF) software (Yan et al., 2016).
The procedure involved conversion of the NIFTI format,
removing the first 10 time points, slice timing, head motion
correction (standard: 2.0 mm or 2◦) and movement parameter
acquisition, spatial normalization with T1 anatomical image
unified segmentation, spatial smoothing (full-width at half-
maximum set as 4), and linear drift removal. Then, the white
matter and cerebrospinal fluid (CSF) signals were eliminated with
covariate regression analysis. Finally, fALFF was calculated and
band-pass filtering (0.01–0.08 Hz) was performed to remove the
effects of low-frequency drift and high-frequency noise.

Statistical Analysis
SPSS (version 19.0, Chicago, IL, United States) was utilized
to analyze demographic and clinical data. One-way analysis
of variance (ANOVA) was employed to compare the age
and education level, and a chi-square test was used to
compare sex among the three groups. Independent two-
sample t-tests were applied to compare the illness duration
and TFGS scores between left and right Bell’s palsy groups.
One-way analysis of covariance (ANCOVA) was conducted
to examine the difference in fALFF among the three groups.
Age, sex, education level, and head movement parameters
were incorporated as covariates. Post hoc t-tests were
conducted to identify differences between every pair of
groups. False discovery rate (FDR) correction was used for

multiple comparison correction in the voxel-based fMRI
statistical map analyses, with a threshold of 0.05 (Song et al.,
2017).

Every brain region showing statistically significant differences
between left and right palsy groups was saved as a cluster mask;
then, the masks were used to extract the fALFF values using
the Extract ROI tool of DPARSF. Pearson’s correlation was used
to analyze the difference in TFGS score between the patients
and their corresponding fALFF values in these brain regions
further, by using SPSS software. Statistical significance was set at
P < 0.05.

RESULTS

Clinical Data
There were no statistically significant differences in sex, age, or
education level between patients with Bell’s palsy and healthy
controls (P > 0.05). The duration from onset to examination
was 0 days and the TFGS scores were 100 in healthy controls.
Disease duration among patients was comparable in the left
(mean ± standard deviation: 4.83 ± 2.14 days) and right
(mean ± standard deviation: 4.42 ± 2.56 days) facial palsy
groups (P > 0.05). There was no significant difference in TFGS
scores between the left and right Bell’s palsy groups (P > 0.05).
However, the TFGS scores of the left and right Bell’s palsy
groups were significantly lower than those of the healthy controls
(Table 1).

Group Differences in fALFF Value
Significant group differences in fALFF among patient and control
groups were observed mainly in the cerebral cortical, subcortical
and deep gray matter regions (Figure 1).

In the left Bell’s palsy group, the brain regions that showed
significantly higher fALFF values than those in the healthy
control group were the bilateral rectus, left orbital part of the
superior frontal gyrus (ORBsup), right orbital part of the middle
frontal gyrus (ORBmid), right superior frontal gyrus (SFG),
right precentral gyrus (PreCG), and right putamen (Table 2 and
Figure 2A).

In the right Bell’s palsy group, the brain regions that showed
significantly higher fALFF values than those in the healthy
control group were the right inferior temporal gyrus (ITG), right
orbital part of inferior frontal gyrus (ORBinf), left orbital part
of the middle frontal gyrus, left orbital part of the superior
frontal gyrus, left temporal pole of the superior temporal
gyrus (TPOsup), left caudate, left and right anterior cingulate
cortex (ACC), left triangular part of the inferior frontal gyrus
(IFGtriang), bilateral middle cingulate cortex (MCC), and left
inferior parietal gyrus (IPL) (Table 2 and Figure 2B).

Compared with the right Bell’s palsy group, the left Bell’s
palsy group showed significantly decreased fALFF values in
the left temporal pole of the superior temporal gyrus, right
supramarginal (SMG), left and right middle cingulate cortex, left
superior frontal gyrus, and left precentral gyrus, and significantly
increased fALFF values in the right superior frontal gyrus and
precentral gyrus (Table 2 and Figure 2C).
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TABLE 1 | Demographic and clinical data of the study population.

Groups Gender (M/F) Age (years) Education (years) Duration (days) TFGS (scores)

Left Bell’s palsy 12/21 48.11 ± 13.27 11.76 ± 3.15 4.83 ± 2.14 19.24 ± 16.09

Right Bell’s palsy 13/21 47.27 ± 12.96 12.38 ± 2.85 4.52 ± 2.46 17.55 ± 16.22

Healthy controls 14/23 46.05 ± 13.65 14.13 ± 2.33 0 100.00

P-value 0.48 0.12 0.09 0.37∗ 0.28∗

Values are expressed as mean ± SD. TFGS, Toronto Facial Grading System. ∗P-value calculated between left and right Bell’s palsy with independent two-sample t-test.

Correlations Between TFGS Scores and
Altered fALFF Values
In the left Bell’s palsy group, the fALFF values showed positive
correlations with the TFGS scores in the left superior TPO
(P < 0.05), left and right MCC (P < 0.01), and the right
PreCG (P < 0.05). The only brain region indicating a negative
correlation between fALFF values and TFGS score was the right
SFG (P < 0.05) (Table 3 and Figure 3A).

In the right Bell’s palsy group, the fALFF values showed
positive correlations with the TFGS scores in the left and right
MCC (P < 0.05) and the right PreCG (P < 0.05). The fALFF
values showed negative correlations with the TFGS scores in the
left superior TPO (P < 0.05) and the left SFG (P < 0.05) (Table 3
and Figure 3B).

DISCUSSION

Pathologically, peripheral facial palsy is caused by simple
peripheral nerve efferent dysfunction, in which the cranial nerve
nuclei cannot control the movement of facial muscles but can still
receive sensory information (Roob et al., 1999; Burmeister et al.,
2011; Klingner et al., 2014). One of the most significant features of
the human brain is its ability to adapt to new environments and

FIGURE 1 | Brain regions showed fALFF differences among the three groups
(left, right Bell’s palsy groups and control group). The abnormal regions were
observed mainly in the cerebral cortical, subcortical and deep gray matter
regions.

accept outside information to remodel functions of the cerebral
cortex (Brändle et al., 1996; Klingner et al., 2011).

This study found that in both left and right Bell’s palsy groups,
the prefrontal cortex (Rectus, ORB, and IFG) and bilateral
cingulate cortex showed abnormal fALFF when compared with
the healthy control group. These brain regions are associated with
emotion processing and are involved in depression, anxiety, and
other negative emotional states (Schaefer et al., 2006; Drevets
et al., 2008; Mohamed et al., 2014). Compared with the healthy
control group, the left Bell’s palsy group showed increased fALFF
values in the right SFG, PreCG and putamen which are involved
in the remodeling of the motor network (Goldberg et al., 2006).
The right palsy group exhibited abnormal fALFF values in the
left caudate nucleus, which is related to motor function (Jiji et al.,
2013). In addition, only the right palsy group showed increased
fALFF values in the right ITG, left TPOsup, and IPL which are
associated with sensory transmission and emotion perception
(Bigler et al., 2007; Jou et al., 2010). The regions related to
sensory transmission and emotion perception differed between
the patient groups in this study. These differences imply that the
bilaterally different reintegration mechanisms probably derive
from asymmetrical compensation for the abnormal functions in
the left and right hemispheres (Liu et al., 2014).

Compared with the right Bell’s palsy group, the left Bell’s palsy
group showed increased fALFF values in the contralateral SFG
and PreG and decreased fALFF values in the ipsilateral SFG and
PreCG. These brain regions are involved in remodeling of the
motor network (Goldberg et al., 2006). In peripheral facial palsy,
the major facial motor nerve pathways are damaged, resulting
in reintegration of the motor network to compensate for lost
motor function (Grefkes et al., 2010). The SFG is related to self-
awareness and laughter and is an important gray matter structure
that usually demonstrated abnormalities in patients with Bell’s
palsy in the previous studies (Goldberg et al., 2006; He et al.,
2014; Wu et al., 2014). We assume that the dysfunction of facial
muscles in the patients might, at least in part, be the cause
of change in the functional activity of contralateral SFG. This
finding is in line with previous finding in the literature that
state that active reintegration of motor function occurs in the
contralateral hemisphere in patients with Bell’s palsy (Liu et al.,
2014). The contralateral hemisphere plays an important role in
motor processes and inhibitory control of action in patients with
Bell’s palsy (Jiji et al., 2013).

Compared with the right Bell’s palsy group, the left Bell’s palsy
group showed decreased fALFF values in the left TPOsup, right
SMG, and left and right MCC. The superior temporal gyrus has
been reported to be involved in language processing and social
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TABLE 2 | Brain regions showing group fALFF differences in Post hoc t-tests analysis.

Brain regions BA Peak MNI Coordinates (mm) (x, y, z) t-value

Left vs. healthy controls

Rectus.L 11 (−9, 39, −18) 2.92

Rectus.R 11 (6, 42, −15) 2.72

ORBsup.L 11 (−12, 48, −21) 2.83

ORBmid.R 11 (24, 48, −15) 2.73

SFG.R 6 (24, 0, 63) 2.87

PreCG.R 6 (24, −6, 48) 3.03

Putamen.R / (24, −6, 12) 2.82

Right vs. healthy controls

ITG.R 20 (57, −15, −30) 2.46

ORBinf.R 38 (33, 15, −21) 2.56

ORBmid.L 11 (−18, 54, −15) 3.32

ORBsup.L 11 (−12, 66, −12) 2.72

TPOsup.L 38 (−54, 15, −12) 2.61

Caudate.L 25 (−9, 15, −6) 2.54

ACC.L 11 (−11, 39, −3) 2.78

ACC.R 11 (9, 42, 0) 2.44

IFGtriang.L 45 (−54, 24, 3) 2.58

MCC.L 23 (−18, −30, 39) 3.11

MCC.R 23 (9, −12, 36) 2.57

IPL.L 40 (−30, −48, 45) 2.68

Left vs. right palsy

TPOsup.L 38 (−51, 9, −9) −2.19

SMG.R 48 (65, −38, 25) −2.21

MCC.L 23 (0, −18, 33) −2.48

MCC.R 23 (2, −18, 34) −2.36

SFG.L 6 (−15, 12, 54) −2.79

SFG.R 8 (24, 12, 60) 2.45

PreCG.L 6 (−24, −12, 75) −2.51

PreCG.R 6 (36, −18, 69) 2.57

BA, Brodmann area; MNI, Montreal Neurologic Institute; TPOsup.L, left temporal pole of superior temporal gyrus; SMG.R, right supramarginal; MCC.L, left middle
cingulate cortex; MCC.R, right middle cingulate cortex; SFG.L, left superior frontal gyrus; SFG.R, right superior frontal gyrus; PreCG.L, left precentral gyrus; PreCG.R,
right precentral gyrus; Rectus.L, left rectus; Rectus.R, right rectus; ORBsup.L, left orbital part of superior frontal gyrus; ORBmid.R, right orbital part of middle frontal gyrus;
Putamen.R, right putamen; ITG.R, right inferior temporal gyrus; ORBinf.R, right orbital part of Inferior frontal gyrus; Caudate.L, left caudate; ACC.L, left anterior cingulate
cortex; ACC.R, right anterior cingulate cortex; IFGtriang.L, left triangular part of inferior frontal gyrus; IPL.L, left inferior parietal lobule.

perception (Bigler et al., 2007; Jou et al., 2010). The supramarginal
gyrus forms part of the somatosensory association cortex, and is
involved in the perception of the emotions, conveyed by postures
and gestures of other people (Hartwigsen et al., 2010). The
differences in fALFF in these regions demonstrated that emotion
perception and somatosensory sense in patients with left facial
palsy show more marked alterations than those in patients with
right facial palsy. It is also interesting that the left and right
middle cingulate cortex demonstrated higher fALFF values in
patients with left facial palsy than those in patients with right
facial palsy. The cingulate cortex is an integral part of the limbic
system, which is involved in emotion formation and processing,
as well as memory (Stanislav et al., 2013). These differences
probably reflect different mechanisms of functional integration
of emotion between patients with early left and right Bell’s palsy
(Schaefer et al., 2006).

Few studies have reported a correlation between fALFF values
and TFGS scores in patients with Bell’s palsy. In the present

study, the brain regions showing a positive correlation with
TFGS scores in patients with left Bell’s palsy were the left
TPOsup, left and right MCC, and right PreCG, while those
in patients with right Bell’s palsy were the bilateral MCC, and
right PreCG; these brain regions were mainly associated with
motor and emotion information processing functions. These
findings suggest that facial muscle recovery benefits from motor
and sensory regulation in patients with Bell’s palsy (Lorch and
Teach, 2010). However, it is still not clear whether increased
motor training and maintenance of the total amount of sensory
information in the early stages are helpful for recovery (Klingner
et al., 2014). The bilateral MCC in the left and right Bell’s palsy
group correlated positively with the TFGS scores. These findings
indicate that the MCC is involved, to some degree, in linking
sensorimotor outcomes to emotion (Drevets et al., 2008). In
the present study, the right SFG showed a negative correlation
with TFGS scores in patients with left Bell’s palsy, while such
correlations were seen in the left TPOsup and the right SFG in
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FIGURE 2 | Brain regions showed fALFF differences between every pair of groups with post hoc t-tests. (A) Brain regions showed fALFF differences between left
Bell’s palsy and control groups. Compared with control group, left Bell’s palsy group showed significantly increased fALFF values in the bilateral rectus, left ORBsup,
right ORBmid, right SFG, right PreCG, and right putamen. (B) Brain regions showed fALFF differences between right Bell’s palsy and control groups. Compared with
control group, right Bell’s palsy group showed significantly increased fALFF values in the right ITG, right ORBinf, left ORBmid, left ORBsup, left TPOsup, left caudate,
bilateral ACC, left IFGtriang, bilateral MCC, and left IPL. (C) Brain regions showed fALFF differences between left and right Bell’s palsy groups. Compared with right
Bell’s palsy group, left Bell’s palsy group showed significantly decreased fALFF values in the left TPOsup, right SMG, bilateral MCC, left SFG, and left PreCG; the left
Bell’s palsy showed significantly increased fALFF values were the right SFG and PreCG. TPOsup, superior temporal gyrus in the temporal pole; SMG, supramarginal;
MCC, middle cingulate cortex; SFG, superior frontal gyrus; PreCG, precentral gyrus; ORBsup, orbital part of superior frontal gyrus; ORBmid, orbital part of middle
frontal gyrus; ITG, inferior temporal gyrus; ORBinf, orbital part of Inferior frontal gyrus; ACC, anterior cingulate cortex; IFGtriang, triangular part of inferior frontal gyrus;
IPL, left inferior parietal lobule.

TABLE 3 | Brain regions showed correlation between fALFF value and TFGS score.

Two brain regions r- values P-values

Left facial palsy TPOsup.L 0.46 0.008

MCC.L & MCC.R 0.49 0.004

SFG.R −0.55 0.001

PreCG.R 0.44 0.01

Right facial palsy TPOsup.L −0.42 0.01

MCC.L & MCC.R 0.42 0.02

SFG.L −0.38 0.02

PreCG.L 0.48 0.04

BA, Brodmann area; MNI, Montreal Neurologic Institute; TPOsup.L, left temporal pole of superior temporal gyrus; SMG.R, right supramarginal; MCC.L, left middle
cingulate cortex; MCC.R, right middle cingulate cortex; SFG.L, left superior frontal gyrus; SFG.R, right superior frontal gyrus; PreCG.L, left precentral gyrus; PreCG.R,
right precentral gyrus.

FIGURE 3 | Correlations between the TFGS scores of Bell’s palsy patients and their corresponding altered fALFF values of abnormal brain regions. (A) In the left
Bell’s palsy group, the brain regions showing a positive correlation were the left TPOsup, bilateral MCC, and right PreCG; the brain region indicating a negative
correlation was the right SFG. (B) In the right Bell’s palsy group, the brain regions showing a positive correlation were the bilateral MCC and left PreCG; the brain
regions showing a negative correlation were the left TPOsup and SFG. TPOsup, superior temporal gyrus in the temporal pole; MCC, middle cingulate cortex; PreCG,
precentral gyrus; SFG, superior frontal gyrus.
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patients with right Bell’s palsy. These regions are mainly related
to emotion perception and self-awareness. Negative emotions
derive from abnormal facial expressions which can cause patients
with Bell’s palsy to be more self-aware (Lorch and Teach, 2010).
Thus, the psychological state of negative emotion and self-
awareness can be a reflection, at least in part, of clinical symptoms
in patients with early Bell’s palsy (Goldberg et al., 2006).

This study had some limitations. The sample size was
relatively small. The findings of this study need to be confirmed
in studies with larger study populations. Moreover, since we did
not conduct follow-up or dynamic observations, our study only
focused on the fALFF changes in patients at the acute stage.
In future studies, the number of cases should be increased and
patients should be grouped by disease stage. Extensive further
investigations are needed to determine the full significance of
fALFF alterations in these patients.

CONCLUSION

In summary, this study provided significant evidence for
abnormal brain activity between patients with early left and
right Bell’s palsy. In addition, the severities of the disease
were closely associated with abnormal fALFF values in certain
brain regions. We also observed differences in abnormal
fALFF values in patients affected on different sides, indicating
that the reintegration mechanisms in patients with left and
right facial palsy may differ. Further studies are needed to

elucidate the exact underlying mechanisms and meaning of
altered fALFF values in the brains of patients with Bell’s
palsy.
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