52 research outputs found

    Impact of motorboats on fish embryos depends on engine type

    Get PDF
    This is the final version of the article. Available from Oxford University Press via the DOI in this record.Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish (Amblyglyphidodon curacao) in shallow reef conditions, allowing us to examine the effects ofin situboat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.Research was funded by the ARC Center of Excellence for Coral Reef Studies (EI140100117), an International Postgraduate Research Scholarship awarded to S.J.S. from James Cook University and a UK Natural Environment Research Council grant to S.D.S. (NE/P001572/1)

    Thermal acclimation of tropical coral reef fishes to global heat waves

    Get PDF
    As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by >100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: Reflections and a horizon scan

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has becomecommonplace and confers an ability to understand mechanistic processes,develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative.Using a 'horizon scan',we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), aswell as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmentalmanagementand ecosystemrestoration,we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements

    Get PDF
    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups

    Review of the projected impacts of climate change on coastal fishes in southern Africa

    Get PDF
    The coastal zone represents one of the most economically and ecologically important ecosystems on the planet, none more so than in southern Africa. This manuscript examines the potential impacts of climate change on the coastal fishes in southern Africa and provides some of the first information for the Southern Hemisphere, outside of Australasia. It begins by describing the coastal zone in terms of its physical characteristics, climate, fish biodiversity and fisheries. The region is divided into seven biogeographical zones based on previous descriptions and interpretations by the authors. A global review of the impacts of climate change on coastal zones is then applied to make qualitative predictions on the likely impacts of climate change on migratory, resident, estuarine-dependent and catadromous fishes in each of these biogeographical zones. In many respects the southern African region represents a microcosm of climate change variability and of coastal habitats. Based on the broad range of climate change impacts and life history styles of coastal fishes, the predicted impacts on fishes will be diverse. If anything, this review reveals our lack of fundamental knowledge in this field, in particular in southern Africa. Several research priorities, including the need for process-based fundamental research programs are highlighted

    Hypoxia tolerance is conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (Lates calcarifer)

    No full text
    Tropical coastal systems are particularly prone to periods of environmental hypoxia, which can result from organismal respiration as well as thermal stratification, and may be further exacerbated by anthropogenic disturbances. In this study, we used five genetically distinct sub-populations of Australian barramundi (Lates calcarifer) to examine the extent of intraspecific variability in hypoxia tolerance. Fish were maintained at two temperatures (26 or 36°C), representing the seasonal thermal range for this species across its tropical distribution in Australia. All fish maintained a constant oxygen consumption rate (M˙O2) as air saturation of the water decreased from 100% down to a critical oxygen saturation ([O2]crit) of 15.44 ± 3.20 and 21.07 ± 3.92% (means ± SD) at 26 and 36°C, respectively. Mean [O2]crit, used as a performance measure of hypoxia tolerance, did not differ between sub-populations. No differences were found for resting M˙O2 between sub-populations at 26°C, but modest differences were detected between two sub-populations at 36°C (3.36 ± 0.62 and 2.83 ± 0.27 mg O2 kg-1 min-1 for Gladstone and Broome sub-populations, respectively). Resting M˙ O2 was lower for sub-populations at 26°C (1.46 ± 0.26 mg O2 kg-1 min-1) than at 36°C (3.10 ± 0.43 mg O2 kg-1 min-1), with a temperature coefficient (Q10) of 2.12 ± 0.30. We conclude that both hypoxia tolerance and resting M˙O2 are conserved across the distribution of barramundi in Australia, which reflects the capacity of this species to cope in environments with large fluctuations in both temperature and dissolved oxygen
    • …
    corecore