34 research outputs found

    Molecular Organization of Mason-Pfizer Monkey Virus Capsids Assembled from Gag Polyprotein in Escherichia coli

    No full text
    We describe the results of a study by electron microscopy and image processing of Gag protein shells—immature capsids—of Mason-Pfizer monkey virus assembled in Escherichia coli from two truncated forms of the Gag precursor: Δp4Gag, in which the C-terminal p4Gag was deleted, and Pro(−)CA.NC, in which the N-terminal peptides and proline 1 of the CA domain were deleted. Negative staining of capsids revealed small patches of holes forming a trigonal or hexagonal pattern most clearly visible on occasional tubular forms. The center-to-center spacing of holes in the network was 7.1 nm in Δp4Gag capsids and 7.4 nm in Pro(−)CA.NC capsids. Image processing of Δp4Gag tubes revealed a hexagonal network of holes formed by six subunits with a single subunit shared between rings. This organization suggests that the six subunits are contributed by three trimers of the truncated Gag precursor. Similar molecular organization was observed in negatively stained Pro(−)CA.NC capsids. Shadowed replicas of freeze-etched capsids produced by either construct confirmed the presence of a hexagonal network of holes with a similar center-to-center spacing. We conclude that the basic building block of the cage-like network is a trimer of the Δp4Gag or Pro(−)CA.NC domains. In addition, our results point to a key role of structurally constrained CA domain in the trimeric interaction of the Gag polyprotein

    Distinct Roles for Nucleic Acid in In Vitro Assembly of Purified Mason-Pfizer Monkey Virus CANC Proteins

    No full text
    In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (ΔProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV ΔProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which ΔProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into ΔProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles

    Structure of the immature HIV-1 capsid in intact virus particles at 8.8 angstrom resolution

    No full text
    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form(1). Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub -tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all alpha-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus(2). To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments

    Voltammetric Determination of 5‐Aminoquinoline at Carbon Film Electrode and Carbon and Gold Screen Printed Electrodes – A Comparative Study

    No full text
    Aminoquinolines are widely used as antimalarial drugs and thus there is an ever increasing demand for their determination. In this paper, non-traditional carbon film electrode developed in our laboratory (CFE) with easily replaceable carbon film was used for the determination of 5-aminoquinoline (5-AQ) and compared with well-established commercially available carbon screen printed electrode (CSPE) and gold screen printed electrode (AuSPE). Electrochemical behavior of 5-AQ was characterized by cyclic and differential pulse voltammetry. Differences in electrochemical behavior of 5-AQ at different electrodes were evaluated. Determination of 5-AQ was carried out by differential pulse, square wave, and direct current voltammetry. Practical applicability of the method was verified by direct determination of 5-AQ in model samples of drinking and river water. Achieved limits of quantitation were in submicromolar concentrations. It was found out that novel CFE in terms of overall performance is in most aspects superior to routinely used commercially available CSPE and AuSPE

    In Vitro Assembly of Virus-Like Particles of a Gammaretrovirus, the Murine Leukemia Virus XMRV

    No full text
    Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a beta-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of beta-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of Delta ProCANC or Delta 10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP

    Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    No full text
    The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle
    corecore