32 research outputs found
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
\ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p<0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
Background
Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.
Methods
People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).
Findings
Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases.
Interpretation
Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand.
Funding
RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
Quantifying association of early proteinuria and estimated glomerular filtration rate changes with long-term kidney failure in C3 glomerulopathy and immune-complex membranoproliferative glomerulonephritis using the United Kingdom RaDaR Registry
\ua9 2025 International Society of Nephrology. Introduction: C3 glomerulopathy (C3G) and immune-complex membranoproliferative glomerulonephritis (IC-MPGN) are rare disorders that frequently result in kidney failure over the long-term. Presently, there are no disease-specific treatments approved for these disorders, although there is much interest in the therapeutic potential of complement inhibition. However, the limited duration and necessarily small size of controlled trials means there is a need to quantify how well short-term changes in estimated glomerular filtration rate (eGFR) and proteinuria predict the clinically important outcome of kidney failure. Methods: We address this using longitudinal data from the UK Registry of Rare Kidney Diseases (RaDaR) involving retrospective and prospective data collection with linkage to hospital laboratories via automated feeds of 371 patients. Analyses of kidney survival were conducted using Kaplan–Meier and Cox regression with eGFR slope estimated using linear mixed models. Results: In a median of 11.0 (inter quartile range 7.4-15.1) years follow-up, 148 patients (40%) reached kidney failure. There was no significant difference in progression to kidney failure between C3G and IC-MPGN groups. Baseline urine protein-creatinine ratio (UPCR), although high, was not associated with kidney failure in either group. Two-year eGFR slope had a modest association with kidney failure. In contrast, both 20%‒50% and 50 mg/mmol reductions in UPCR between 0-12 months were associated with lower kidney failure risk in both groups. Notably, those with a UPCR under 100 mg/mmol at 12 months had a substantially lower risk of kidney failure (hazard ratio 0.10 (95% confidence interval 0.03-0.30). Conclusions: Overall, proteinuria a short time after diagnosis is strongly associated with long-term outcomes and a UPCR under 100 mg/mmol at one year is associated with a substantially lower kidney failure risk
Review of eprodisate for the treatment of renal disease in AA amyloidosis
Adam Rumjon1, Thomas Coats1, Muhammad M Javaid21Department of Nephrology, King&#39;s College Hospital NHS Foundation Trust, London, 2Department of Nephrology, Dartford and Gravesham NHS Trust, Darent Valley Hospital, Dartford, UKAbstract: Secondary (AA) amyloidosis is a multisystem disorder complicating chronic infections or inflammatory diseases. It is characterized by extracellular deposit of fibrils composed of fragments of serum amyloid A (SAA), an acute phase reactant protein. The kidney is the most frequent organ involved, manifesting as progressive proteinuria and renal impairment. Attenuation of the level of circulating SAA protein by treating the underlying inflammatory condition remains the primary strategy in treating AA amyloidosis. However, at times, achieving adequate control of protein production can prove difficult. In addition, relapse of renal function often occurs rapidly following any subsequent inflammatory stimulus in patients with existing amyloidosis. Recently there has been an interest in finding other potential strategies targeting amyloid deposits themselves. Eprodisate is a sulfonated molecule with a structure similar to heparan sulfate. It competitively binds to the glycosaminoglycan-binding sites on SAA and inhibits fibril polymerization and amyloid deposition. Recent randomized clinical trial showed that it may slow down progressive renal failure in patients with AA amyloidosis. However confirmatory studies are needed and results of a second Phase III study are eagerly awaited to clarify whether or not eprodisate has a place in treating renal amyloid disease.Keywords: AA amyloidosis, eprodisate, pathogenesi
Ambulatory Blood Pressure Monitoring: An Invaluable Tool Comes of Age for Patients with Chronic Kidney Disease?
Obesity and iron deficiency in chronic kidney disease:the putative role of hepcidin
Free to read at publisher's site.</center
Obesity Does Not Influence Hepcidin and Hemojuvelin Levels in Hemodialysis Patients
Background/Aims: Clinical studies have shown increased levels of hepcidin causing functional iron deficiency in obese individuals. This study examined whether obesity contributes to increased hepcidin and hemojuvelin levels in adult hemodialysis patients. Methods: In a case-control design, 37 obese [ body mass index (BMI) > 30 kg/m2] stable hemodialysis patients and 37 patients with normal BMI (20-25 kg/m2), matched for age, gender and race, who fulfilled a strict set of inclusion and exclusion criteria were included in the study. Serum hepcidin and hemojuvelin, markers of iron status and inflammation, and routine hematological and biochemical variables were measured on samples obtained prior to the midweek hemodialysis session. Results: Obese and nonobese patients (BMI 35.1 +/- 3.4 vs. 22.8 +/- 1.4 kg/m2; p <0.001) were similar with regard to basic comorbidities and use of erythropoietin and iron. Levels of hemoglobin, hypochromic red cells and reticulocytes were similar in the two groups. Serum iron and transferrin saturation levels were on the low side and not different between obese and lean individuals; total iron-binding capacity showed a trend towards higher levels in obese patients (48.4 +/- 8.3 vs. 44.9 +/- 7.4 mu mol/l; p = 0.065). Levels of serum ferritin (651 +/- 302 vs. 705 +/- 327 mu g/l; p = 0.46), hepcidin (118.3 +/- 67.7 vs. 119.3 +/- 78.0 ng/ml; p = 0.95) and hemojuvelin (1.90 +/- 1.11 vs. 1.94 +/- 1.24 mg/l; p = 0.90) were high but similar between the two groups. Serum hepcidin showed a significant correlation only with ferritin (r = 0.287, p = 0.013). Conclusions: Hepcidin and hemojuvelin levels are already considerably elevated in dialysis patients, but obesity does not have an additional impact. Further studies should examine whether increased weight contributes towards hepcidin elevation in predialysis individuals, in whom there is a lesser burden of systemic inflammation.</p
Prevalence and Factors Associated with Hyperkalemia in Predialysis Patients Followed in a Low-Clearance Clinic
Background and objectives: Recent studies evaluated the prevalence of hyperkalemia and related risk factors in patients with CKD of various stages, but there is limited relevant information in predialysis patients. This study aimed to examine the prevalence and factors associated with hyperkalemia in the structured environment of a low-clearance clinic.Design, setting, participants, & measurements: In a cross-sectional fashion over a prespecified period of 4 months, information on serum potassium and relevant laboratory variables, comorbidities, medications, and dietician input in patients with advanced CKD under follow-up in the low-clearance clinic of our department was recorded. Univariate and multiple logistic regression analyses were used to identify factors associated with serum potassium≥5.5 meq/L.Results: The study population consisted of 238 patients aged 66.2±4.2 years with estimated GFR of 14.5±4.8 ml/min per 1.73 m2. The prevalence of hyperkalemia. defined as potassium>5.0, ≥5.5, and ≥6.0 meq/L., was at 54.2%, 31.5%, and 8.4%, respectively. In univariate comparisons, patients with potassium≥5.5 meq/L had significantly higher urea and lower estimated GFR and serum bicarbonate; also, they were more often using sodium bicarbonate and had received potassium education and attempts for dietary potassium lowering. Use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers was not associated with hyperkalemia. In multivariate analyses, estimated GFR<15 ml/min per 1.73 m2 and sodium bicarbonate use were independently associated with hyperkalemia.Conclusions: The prevalence of hyperkalemia in predialysis patients with CKD is high. Even at this range of renal function, low estimated GFR seems to be the most important factor associated with hyperkalemia among the wide range of demographic, clinical, and laboratory characteristics studied
