6 research outputs found

    Systemic perturbations of the kynurenine pathway precede progression to dementia independently of amyloid-β

    Get PDF
    Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-β and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings

    Alzheimer’s disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) biomarkers, although of established utility in the diagnostic evaluation of Alzheimer's disease (AD), are known to be sensitive to variation based on pre-analytical sample processing. We assessed whether gravity droplet collection versus syringe aspiration was another factor influencing CSF biomarker analyte concentrations and reproducibility. Methods: Standardized lumbar puncture using small calibre atraumatic spinal needles and CSF collection using gravity fed collection followed by syringe aspirated extraction was performed in a sample of elderly individuals participating in a large long-term observational research trial. Analyte assay concentrations were compared. Results: For the 44 total paired samples of gravity collection and aspiration, reproducibility was high for biomarker CSF analyte assay concentrations (concordance correlation [95%CI]: beta-amyloid1-42 (Aβ42) 0.83 [0.71 - 0.90]), t-tau 0.99 [0.98 - 0.99], and phosphorylated tau (p-tau) 0.82 [95 % CI 0.71 - 0.89]) and Bonferroni corrected paired sample t-tests showed no significant differences (group means (SD): Aβ42 366.5 (86.8) vs 354.3 (82.6), p = 0.10; t-tau 83.9 (46.6) vs 84.7 (47.4) p = 0.49; p-tau 43.5 (22.8) vs 40.0 (17.7), p = 0.05). The mean duration of collection was 10.9 minutes for gravity collection and <1 minute for aspiration. Conclusions: Our results demonstrate that aspiration of CSF is comparable to gravity droplet collection for AD biomarker analyses but could considerably accelerate throughput and improve the procedural tolerability for assessment of CSF biomarkers

    Buccal cell cytokeratin 14 identifies mild cognitive Impairment and Alzheimer’ s Disease in the AIBL Study of Aging

    No full text
    Previous studies have suggested that mild cognitive impairment (MCI) may be reflective of the early stages of neurodegenerative disorders such as Alzheimer’s disease (AD). The hypothesis was that cytokeratin (CK) 14 expression can be used as a biomarker in isolated buccal mucosa to identify individuals with MCI or AD from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging. Visual assessment of buccal cell CK14 expression was carried out using immunofluorescence techniques. The frequency of basal buccal cells expressing CK14 was significantly lower in the MCI (P=0.0002) and AD (P<0.05) groups compared with the control group. Receiver-operating characteristic (ROC) curves were carried out for CK14 expression and yielded an area under the curve (AUC) of 0.899 for the MCI (P<0.0001) group and 0.772 for the AD (P=0.004) group. When the CK14 expression data were combined with plasma homocysteine concentration, the AUC was further improved to 0.932 and 0.788 for the MCI (P=0.0001) and AD (P=0.004) groups, respectively. APOE ε4 carriers in the control group had 21% lower CK14 expression compared with control non APOE ε4 carriers, however this difference was not statistically significant. The changes in the buccal cell CK14 expression observed in this pilot study could prove useful as a potential biomarker in identifying individuals with an increased risk of developing MCI and eventually AD. These promising results need to be replicated in a larger subset of the AIBL cohort and in cohorts of other neurodegenerative disorders to determine changes specific to AD

    Concordance between cerebrospinal fluid biomarkers with Alzheimer’s disease pathology between three independent assay platforms

    Get PDF
    Background:To enhance the accuracy of clinical diagnosis for Alzheimer’s disease (AD), pre-mortem biomarkers have become increasingly important for diagnosis and for participant recruitment in disease-specific treatment trials. Cerebrospinal fluid (CSF) biomarkers provide a low-cost alternative to positron emission tomography (PET) imaging for in vivo quantification of different AD pathological hallmarks in the brains of affected subjects; however, consensus around the best platform, most informative biomarker and correlations across different methodologies are controversial. Objective:Assessing levels of Aβ-amyloid and tau species determined using three different versions of immunoassays, the current study explored the ability of CSF biomarkers to predict PET Aβ-amyloid (32 Aβ-amyloid–and 45 Aβ-amyloid+), as well as concordance between CSF biomarker levels and PET Aβ-amyloid imaging. Methods:Prediction and concordance analyses were performed using a sub-cohort of 77 individuals (48 healthy controls, 15 with mild cognitive impairment, and 14 with AD) from the Australian Imaging Biomarker and Lifestyle study of aging. Results:Across all three platforms, the T-tau/Aβ42 ratio biomarker had modestly higher correlation with SUVR/BeCKeT (ρ= 0.69–0.8) as compared with Aβ42 alone (ρ= 0.66–0.75). Differences in CSF biomarker levels between the PET Aβ-amyloid–and Aβ-amyloid+ groups were strongest for the Aβ42/Aβ40 and T-tau/Aβ42 ratios (p < 0.0001); however, comparison of predictive models for PET Aβ-amyloid showed no difference between Aβ42 alone and the T-tau/Aβ42 ratio. Conclusion:This study confirms strong concordance between CSF biomarkers and PET Aβ-amyloid status is independent of immunoassay platform, supporting their utility as biomarkers in clinical practice for the diagnosis of AD and for participant enrichment in clinical trials

    Alzheimer’s Disease Normative Cerebrospinal Fluid Biomarkers Validated in PET Amyloid-β Characterized Subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study

    No full text
    Background: The cerebrospinal fluid (CSF) amyloid-β (Aβ)1-42, total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer’s disease (AD). Objective: The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Methods: Aβ pathology was determined by PET imaging, utilizing 11C-Pittsburgh Compound B, 18F-flutemetamol, or 18F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ1-42 >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a “positive” CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. Results: CSF Aβ1-42 was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ1-42 provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ1-42 to predict MCI/AD, reached ≥92% sensitivity and specificity. Conclusions: CSF Aβ1-42 levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage
    corecore