58 research outputs found

    SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain

    Get PDF
    Altres ajuts: Financial support for this work was provided by: Career Integration Grant (ref. 304111), Ramón y Cajal Fellowship (RYC-2011-08391p) IEDI-2017-00822; ; BES-2013-063720 (MINECO) to GG; MH096847 (NIH), MH108408 (NIH) and NS064079 (NIH) to GR and RO1 MH112151 (NIH) to RLH. All experiments were conducted in compliance with the ARRIVE guidelines.The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy. Syngap1 gene encodes for different synaptic Ras/Rap GTPase-activating (SynGAP) isoforms which are key for brain function. SynGAP C-termini splice variants show different spatio-temporal expression and subcellular localization in the developing mouse brain. This study reveals a non-synaptic and heterogenous role of SynGAP spliced variants. Depicted abundance differences only allow relative comparison within a given tissue (top panel), postnatal age (PND, middle panel), or subcellular distribution (bottom panel). Ctx, cortex; Hip, hippocampus; Str, striatum; OB, Olfactory Bulb; Crb, cerebellum and tSynGAP, total SynGAP

    Selective, Retrieval-Independent Disruption of Methamphetamine-Associated Memory by Actin Depolymerization

    Get PDF
    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown

    The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators

    No full text
    Abstract Background Pathologic mutations in SYNGAP1 cause a genetically defined form of intellectual disability (ID) with comorbid epilepsy and autistic features. While only recently discovered, pathogenicity of this gene is a relatively frequent genetic cause of classically undefined developmental delay that progresses to ID with commonly occurring comorbidities. Main body A meeting of 150 people was held that included affected individuals and their caregivers, clinicians that treat this and related brain disorders, neuroscientists that study SYNGAP1 biology or the function of related genes, and representatives from government agencies that fund science and approve new medical treatments. The meeting focused on developing a consensus among all stakeholders as to how best to achieve a more fundamental and profound understanding of SYNGAP1 biology and its role in human disease. Short conclusion From all of these proceedings, several areas of consensus emerged. The clinicians and geneticists agreed that the prevalence of epilepsy and sensory processing impairments in SYNGAP1-related brain disorders approached 100%. The neurobiologists agreed that more basic research is needed to better understand the molecular and cellular functions of the Syngap1 gene, which will lead to targets for therapeutic intervention. Finally, everyone agreed that there is a pressing need to form a robust patient registry as an initial step toward a prospective natural history study of patients with pathogenic SYNGAP1 variants

    Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress.

    No full text
    Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain's response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain's stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors
    corecore