6 research outputs found

    The buckling instability of aggregating red blood cells

    Get PDF
    Plasma proteins such as fibrinogen induce the aggregation of red blood cells (RBC) into rouleaux, which are responsible for the pronounced shear thinning behavior of blood, control the erythro- cyte sedimentation rate (ESR) a common hematological test and are involved in many situations of physiological relevance such as structuration of blood in the microcirculation or clot formation in pathological situations. Confocal microscopy is used to characterize the shape of RBCs within rouleaux at equilibrium as a function of macromolecular concentration, revealing the diversity of contact zone morphology. Three different configurations that have only been partly predicted before are identified, namely parachute, male-female and sigmoid shapes, and quantitatively recovered by numerical simulations. A detailed experimental and theoretical analysis of clusters of two cells shows that the deformation increases nonlinearly with the interaction energy. Models indicate a forward bifurcation in which the contacting membrane undergoes a buckling instability from a flat to a de- formed contact zone at a critical value of the interaction energy. These results are not only relevant for the understanding of the morphology and stability of RBC aggregates, but also for a whole class of interacting soft deformable objects such as vesicles, capsules or cells in tissues.Comment: 22 pages, 12 figure

    On the dynamics of the flagellar beat under load

    Get PDF
    Eukaryotic flagella are lash-like cell appendages that can actively bend in order to serve different purposes, from cell propulsion to fluid transport. A remarkable phenomenon which can be observed for beating flagella is stable synchronisation, although a central internal clock seems to be missing. By exposing the biflagellate microswimmer Chlamydomonas reinhardtii, whose flagella are termed cis and trans depending on their proximity to the cell’s eyespot, to controlled fluid flow, we determine the phase-dependent load response of the flagellar beat which is thought to play an important role for synchronisation. Over a certain range, the beating frequency changes linearly with the applied load. If the external load exceeds a certain threshold, the flagellar beat comes to a halt. This threshold depends on the direction of the applied load and if the load is gradually increased from zero to maximum or vice versa, revealing a more or less pronounced hysteresis for cis- and trans-flagellum, individually. For intermediate load, we find two previously unknown, dynamic beating modes of C. reinhardtii’s flagella which occur only if the flow direction is opposite to the swimming direction with one of these new beating modes being almost exclusive to the cis-flagellum. In general, we observe a different behaviour of cis- and trans-flagellum under load. At last, we find that the capability for flagellar synchronisation depends on the strength and the direction of the applied load.Eukaryotische Flagellen sind fadenartige Zellausstülpungen, die sich aktiv verbiegen können und von der Fortbewegung von Zellen bis hin zum Flüssigkeitstransport unterschiedlichen Zwecken dienen. Ein erstaunliches Phänomen, das man bei schlagenden Flagellen beobachten kann, ist deren stabile Synchronisation, wenngleich ein zentraler Taktgeber zu fehlen scheint. Indem wir Chlamydomonas reinhardtii, einen Mikroschwimmer, dessen Flagellen abhängig von ihrer Nähe zum Augenfleck als cis- und trans-Flagellum bezeichnet werden, kontrollierten Flüssen aussetzen, können wir die Lastantwort des Flagellenschlags, welche eine wichtige Rolle für die Synchronisation spielt, bestimmen. In einem gewissen Bereich ändert sich die Frequenz des Flagellenschlags linear mit der angelegten Last. Überschreitet die Last einen bestimmten Schwellenwert, der sowohl von der Richtung der angelegten Last als auch davon abhängt, ob die Last schrittweise von Null auf das Maximum erhöht wird oder umgekehrt, so kommt der Flagellenschlag zum Erliegen. Ebenso zeigen cis- und trans-Flagellum eine mehr oder weniger stark ausgeprägte Hysterese. Im Bereich mittlerer Last finden wir zwei bisher unbekannte, dynamische Schlagmoden, sofern die Zelle entgegen der Flussrichtung schwimmt, wobei eine Schlagmode fast ausschließlich für das cis-Flagellum beobachtet werden konnte. Außerdem hängt die Fähigkeit zur Synchronisation des Flagellenschlags sowohl von der Richtung als auch von der Stärke der angelegten Last ab

    Schule und Gesellschaft um 1800. Der Schulbesuch in der Helvetischen Republik

    Full text link
    Über Entstehung und frühe Entwicklung der Institution Schule und des Schulbesuchs in der Schweiz ist – trotz des großen öffentlichen Interesses – erstaunlicherweise relativ wenig bekannt. Mit seiner Forschung zum Schulbesuch leistet Michael Ruloff einen … Beitrag zur Einschätzung des gesellschaftlichen Stellenwerts der Schule um 1800. Herzstück der Untersuchung des Besuchs der Schule ist die Erhebung einer Stichprobe mit gut 100 Gemeinden und ihren rund 126 Schulen. Mit Hilfe einer quantitativen sowie einer qualitativen Analyse werden Schulbesuchswerte errechnet, verglichen und interpretiert. In einem weiteren Schritt wird in ausgewählten Dörfern und Städten auf die Schulwirklichkeit vor Ort eingegangen und schließlich wird eine These zum Besuch der damaligen Schule diskutiert: Der Schulbesuch war abhängig von lokalen Faktoren wie der Erreichbarkeit der Schule, der Identifikation in der (kommunalen) Gesellschaft mit dieser Schule sowie der finanziellen Lage der Schulgemeinde. (DIPF/Orig.

    In-phase and anti-phase flagellar synchronization by waveform compliance and basal coupling

    Get PDF
    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows
    corecore