256 research outputs found

    Method of functional integration in the problem of line width of parametric X-ray relativistic electron radiation in a crystal

    Full text link
    The coherent and non-coherent scattering effects on "backward" parametric X-ray radiation by relativistic electrons in a crystal on the basis of the method of functional integration is investigated. A comparison of contributions of these effects to parametric X-ray radiation line width has been considered. It is shown that in a number of cases the major contribution to the line width of parametric X-ray radiation is made by non-coherent multiple scattering.Comment: 7 pages, LaTeX2e forma

    Resonant Diffusive Radiation in Random Multilayered Systems

    Full text link
    We have theoretically shown that the yield of diffuse radiation generated by relativistic electrons passing random multilayered systems can be increased when a resonant condition is met. Resonant condition can be satisfied for the wavelength region representing visible light as well as soft X-rays. The intensity of diffusive soft X-rays for specific multilayered systems consisting of two components is compared with the intensity of Cherenkov radiation. For radiation at photon energy of 99.4eV99.4eV, the intensity of Resonant Diffusive Radiation (RDR) generated by 5MeV5MeV electrons passing a Be/SiBe/Si multilayer exceeds the intensity of Cherenkov radiation by a factor of 60\approx 60 for electrons with the same energy passing a SiSi foil. For a photon energy of 453eV453eV and 13MeV13MeV electrons passing Be/TiBe/Ti multilayer generate RDR exceeding Cherenkov radiation generated by electrons passing a TiTi foils by a factor 130\approx 130.Comment: Talk presented at the RC2005, Frascati, Ital

    Relativistic Oscillator Model and Delbr\"uck scattering

    Get PDF
    Elastic scattering of photons in a Lorentz-scalar potential via virtual spin-zero particle-antiparticle pairs (`` Delbr\"uck scattering") is considered. An analytic expression for the Delbr\"uck amplitude is found exactly in case of an oscillator potential. General properties of the amplitude and its asymptotics are discussed.Comment: 8 pages, LATEX, BINP 94-6

    The influence of the structure imperfectness of a crystalline undulator on the emission spectrum

    Full text link
    We study the influence of an imperfect structure of a crystalline undulator on the spectrum of the undulator radiation. The main attention is paid to the undulators in which the periodic bending in the bulk appears as a result of a regular (periodic) surface deformations. We demonstrate that this method of preparation of a crystalline undulator inevitably leads to a variation of the bending amplitude over the crystal thickness and to the presence of the subharmonics with smaller bending period. Both of these features noticeably influence the monochromatic pattern of the undulator radiation.Comment: 26 pages, 9 figures, IOP style, submitted to NIM

    Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

    Full text link
    The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability. Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation of this effect is given and a possible application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in the Journal of Physics: Conference Serie

    Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder

    Full text link
    The radiation emitted by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields, and for the spectral-angular distribution of radiation in the exterior medium. It is shown that under the Cherenkov condition for dielectric permittivity of the cylinder and the velocity of the particle image on the cylinder surface, strong narrow peaks are present in the angular distribution for the number of radiated quanta. At these peaks the radiated energy exceeds the corresponding quantity for a homogeneous medium by some orders of magnitude. The results of numerical calculations for the angular distribution of radiated quanta are presented and they are compared with the corresponding quantities for radiation in a homogeneous medium. The special case of relativistic charged particle motion along the direction of the cylinder axis with non-relativistic transverse velocity (helical undulator) is considered in detail. Various regimes for the undulator parameter are discussed. It is shown that the presence of the cylinder can increase essentially the radiation intensity.Comment: 18 pages, 8 EPS figure

    Electron-based crystalline undulator

    Full text link
    We discuss the features of a crystalline undulator of the novel type based on the effect of a planar channeling of ultra-relativistic electrons in a periodically bent crystals. It is demonstrated that an electron-based undulator is feasible in the tens of GeV range of the beam energies, which is noticeably higher than the energy interval allowed in a positron-based undulator. Numerical analysis of the main parameters of the undulator as well as the characteristics of the emitted undulator radiation is carried out for 20 and 50 GeV electrons channeling in diamond and silicon crystals along the (111) crystallographic planes.Comment: 16 pages, 8 figures, Latex, IOP styl

    Enhancement Effects of Transition and Vavilov-Cherenkov Radiation Mechanisms Under Grazing Interaction of Fast Electrons With a Thick Substrate Applied by Thin Layer

    Get PDF
    The paper presents the results of a theoretical study and a mathematical model of radiation processes occurred during the grazing interaction of fast electrons with semi-infinite targets applied on a thin amorphous layer. The developed model considers Vavilov-Cherenkov and transition radiation mechanisms and predicts the possibility to enhance the angular radiation density under grazing incidence of fast electrons on the layer. The characteristics of possible extreme vacuum ultraviolet and soft X-ray sources are estimated

    One-dimensional Model of a Gamma Klystron

    Full text link
    A new scheme for amplification of coherent gamma rays is proposed. The key elements are crystalline undulators - single crystals with periodically bent crystallographic planes exposed to a high energy beam of charged particles undergoing channeling inside the crystals. The scheme consists of two such crystals separated by a vacuum gap. The beam passes the crystals successively. The particles perform undulator motion inside the crystals following the periodic shape of the crystallographic planes. Gamma rays passing the crystals parallel to the beam get amplified due to interaction with the particles inside the crystals. The term `gamma klystron' is proposed for the scheme because its operational principles are similar to those of the optical klystron. A more simple one-crystal scheme is considered as well for the sake of comparison. It is shown that the gamma ray amplification in the klystron scheme can be reached at considerably lower particle densities than in the one-crystal scheme, provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure

    Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    Full text link
    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.Comment: 17 pages, 9 figures, discussion, graphs, and references adde
    corecore