43 research outputs found

    Nonlinear properties of AlGaAs waveguides in continuous wave operation regime

    Get PDF
    Aluminum Gallium Arsenide (AlGaAs) is an attractive platform for the development of integrated optical circuits for all-optical signal processing thanks to its large nonlinear coefficients in the 1.55-μm telecommunication spectral region. In this paper we discuss the results of the nonlinear continuous-wave optical characterization of AlGaAs waveguides at a wavelength of 1.55 μm. We also report the highest value ever reported in the literature for the real part of the nonlinear coefficient in this material (Re(γ) ≈521 W<sup>−1</sup>m<sup>−1</sup>)

    Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides

    Full text link
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.023838 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawWe present the characterization of the ultrafast nonlinear dynamics of a CMOS-compatible horizontal-slot waveguide with silicon nanocrystals. Results are compared to strip silicon waveguides, and modeled with nonlinear split-step calculations. The extracted parameters show that the slot waveguide has weaker carrier effects and better nonlinear figure-of-merit than the strip waveguides.We acknowledge EU-project PHOLOGIC (FP6-IST-NMP-017158), Spanish Ministry of Science and Innovation SINADEC (TEC2008-06333) and PROMETEO/2010/087 NANOFOTONICA projects and Universidad Politecnica de Valencia for PAID2011/1914 and J. Matres' doctoral grant.Matres Abril, J.; Lacava, C.; Ballesteros García, G.; Minzioni, P.; Cristiani, I.; Fedeli, JM.; Martí Sendra, J.... (2012). Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides. Optics Express. 20(21):23838-23845. https://doi.org/10.1364/OE.20.023838S2383823845202

    Quantum Dot Energy Relaxation Mediated by Plasmon Emission in Doped Covalent Semiconductor Heterostructures

    Get PDF
    The interaction between interface plasmons within a doped substrate and quantum dot electrons or holes has been theoretically studied in double heterostructures based on covalent semiconductors. The interface plasmon modes, the corresponding dispersion relationship, and the intraband carrier relaxation rate in quantum dots are reported. We find the critical points in the interface plasmon density of states for multilayered structures results in enhanced quantum dot intraband carrier relaxation when compared to that for a single heterostructure. A detailed discussion is made of the relaxation rate and the spectral position dependencies on the quantum dot layer thickness as well as on the dopant concentration. The material system considered was a p-Si∕SiO2∕air heterostructure with Ge quantum dots embedded in an SiO2 layer. This structure is typical of those used in technical applications

    Tip-enhanced secondary emission of a semiconductor quantum dot

    No full text
    peer-reviewedThe interaction between interface plasmons within a doped substrate and quantum dot electrons or holes has been theoretically studied in double heterostructures based on covalent semiconductors. The interface plasmon modes, the corresponding dispersion relationship, and the intraband carrier relaxation rate in quantum dots are reported. We find the critical points in the interface plasmon density of states for multilayered structures results in enhanced quantum dot intraband carrier relaxation when compared to that for a single heterostructure. A detailed discussion is made of the relaxation rate and the spectral position dependencies on the quantum dot layer thickness as well as on the dopant concentration. The material system considered was a p-Si/SiO2 / air heterostructure with Ge quantum dots embedded in an SiO2 layer. This structure is typical of those used in technical applications

    Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    No full text
    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal's electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals-with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio-will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules
    corecore