394 research outputs found

    NEW CLIMATE SERVICES TO COASTAL COMMUNITIES IN GALICIA (NW SPAIN)

    Get PDF
    Adaptation to climate change requires the implementation of services that translate scientific knowledge into practical results, so that policymakers and stakeholders can understand the risks and increase their resilience. In the coast those risks are related to flooding, erosion or physico-chemical changes of seawater. The main aim of MarRisk project was to generate this type of services for the NW of the Iberian Peninsula, relying on the experience of a coastal oceanographic observatory (RAIA). These services have been developed based on indicators and models, through a process of co-creation. Thus, a resilience index for harbours or estimations of physical-chemical changes of seawater that can impact sectors such as fishing or aquaculture have been generated. Moreover we have calculated maps of vulnerable areas to flood and erosion. As a conclusion we highlight that the elaboration of a set of indicators together with the expertise of modelization of climate change is not enough to help coastal communities to adapt to climate change. The interaction with different stakeholders is also a needful step to create climate services.En prens

    A biogeochemical model for North and Northwest Iberia: some applications

    Get PDF
    The Coastal and Ocean modeling group at the Spanish Institute of Oceanography (IEO) has a broad experience in hydrodynamic modeling with ROMS in the area of West and North Iberia. Our main task consists of providing insight on the coastal and ocean dynamics in support to the intense IEO ecosystem and fisheries research in the area. The NW coast of Iberia is characterized by high levels of primary production that result from relatively frequent and intense inputs of nutrients caused by upwelling, especially in spring and summer. Primary production sustains wealthy fisheries and aquaculture industries, which constitute a prime economic activity in the region. As a first approach to understand the ecosystem variability in the area we focused on the spring bloom. A high resolution (~3 km) configuration of the ROMS physical model with atmospheric forcing coming from the regional agency Meteogalicia (http://www.meteogalicia.es), which has shown to represent the main features of the shelf and slope circulation in the area, was run coupled to the Fasham-type Fennel biogeochemical model (N2PZD2). Any biogeochemical model aimed at providing a reliable representation of the dynamics of a certain area should be tuned according to its characteristics. In an upwelling system, the composition of phytoplankton varies from the beginning to the end of the bloom. When nutrients and irradiance are high, diatoms are the dominant group, whereas flagellates become more important when upwelling relaxes and, consequently, nutrients and light intensity decrease. In the NW Iberian coast, it has been found that Chaetoceros socialis is the dominant diatom species during the spring bloom (Bode et al, 1996, 1998). For this reason, we have decided to use parameters that are characteristic of plankton at the spring bloom. In particular, the parameters of Chaetoceros socialis have been considered for the unique phytoplankton class of the model. We will show comparisons of the model results for 2006 and 2007 with observations at weekly and daily time scales (MODIS chlorophyll-a images, in situ observations from the “Instituto Español de Oceanografía” Pelacus cruises). The spring bloom is reasonably reproduced in the NW and N coasts in time, space and intensity. The variability between the primary production in 2006 and 2007 can be related to the oceanographic conditions thanks to the use of a numerical model. The results are promising and encourage us to move forward to increase the complexity of our models and broaden their range of application. We will show some examples of the use of the IEO models to get some insight on sardine recruitment variability and harmful algal bloom prediction

    Dynamics of river plumes in the South Brazilian Bight and South Brazil

    Get PDF
    Research articleThe plumes from the rivers of the South Brazilian Bight (SBB) and South Brazil (SB) were studied using a realistic model configuration. River plume variability on continental shelves is driven by the input of river runoff into the shelf, by wind variability, and also by ambient currents and its seasonal variability, especially the Brazil Current, which are realistically modelled in this study. It is presented a simulation of 4 years using a nested configuration, which allows resolving the region around Florianópolis with very high resolution (∼150 m). The dispersion of river plumes was assessed not only with the hydrodynamical model results but also by using passive tracers whose dynamics was analyzed seasonally. Several dyes were released together with the river discharges. This approach allowed calculating the depths of the riverine freshwater, and the resulting regions affected by the plumes. Northward intrusions of waters from the southern region, under the potential influence of the distant La Plata river plume, were evaluated with a Lagrangian approach. The local river plumes are confined to the inner shelf, except south of 30°S where discharges from Lagoa dos Patos disperse over the shelf in the spring and summer. The Brazil Current flowing southward over the slope prevents the river plumes from interaction with oceanic mesoscale dynamics. The river plumes are, thus, mainly controlled by the wind forcing. The plumes from SBB are able to disperse until SB following the southward wind regime typical of the summer. And both the SB and La Plata river plumes are also able to reach SBB, forced by the northward wind typical of the winter season, until the latitude of 25.5°S. A low salinity belt (below 35) is present along the coastal region of SB and SBB year-round, supported by contributions from both the large and small rivers. The interaction between the different plumes influences the dispersion patterns, shielding the Florianṕolis coastal region from plumes of distant rivers, and dispersing the plume of SBB rivers away from Santa Catarina Island as it disperses southward during the summer months.Versión del edito

    Modeling Iberian sardine Early Life Stages dynamics

    Get PDF
    The Iberian sardine (Sardina pilchardus) constitutes a traditional target species in western Iberia that remains to be economically important in Portugal and, to a lesser extent, in Galicia (NW Spain). The time series of recruitment shows ups and downs in the last decades. According to the ICES Advice 2013 for regions VIII and IXa, the biomass of age 1 sardine and older has decreased since 2006 and recruitment has been below the long term average since 2005. In order to understand these fluctuations, a Lagrangian model to simulate sardine Early Life Stages (ELS), this is, egg and larvae stages, has been set up. The results of a high resolution hydrodynamic model for North and Northwest Iberia have been used as an input of the Lagrangian model Ichthyop (Lett et al., (2008)) to simulate ELS advection and dispersion. Ichthyop has been adapted to sardine by including some biological behavior. A biogeochemical model coupled to the hydrodynamic model was also used to get some insight on recruitment for years 2006 2007

    Automatization of Harmful Algal Bloom early warning services: an example in Galicia (NW Spain)

    Get PDF
    Predicting Risk and Impact of Harmful Events in the Aquaculture SectorPRIMROS
    corecore