16,230 research outputs found
Microcanonical finite-size scaling in specific heat diverging 2nd order phase transitions
A Microcanonical Finite Site Ansatz in terms of quantities measurable in a
Finite Lattice allows to extend phenomenological renormalization (the so called
quotients method) to the microcanonical ensemble. The Ansatz is tested
numerically in two models where the canonical specific-heat diverges at
criticality, thus implying Fisher-renormalization of the critical exponents:
the 3D ferromagnetic Ising model and the 2D four-states Potts model (where
large logarithmic corrections are known to occur in the canonical ensemble). A
recently proposed microcanonical cluster method allows to simulate systems as
large as L=1024 (Potts) or L=128 (Ising). The quotients method provides
extremely accurate determinations of the anomalous dimension and of the
(Fisher-renormalized) thermal exponent. While in the Ising model the
numerical agreement with our theoretical expectations is impressive, in the
Potts case we need to carefully incorporate logarithmic corrections to the
microcanonical Ansatz in order to rationalize our data.Comment: 13 pages, 8 figure
Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star
The aim of the project is to improve our knowledge on the multiplicity of
planet-host stars at wide physical separations.
We cross-matched approximately 6200 square degree area of the Southern sky
imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA)
Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for
wide common proper motion companions to known planet-host stars. We
complemented our astrometric search with photometric criteria.
We confirmed spectroscopically the co-moving nature of seven sources out of
16 companion candidates and discarded eight, while the remaining one stays as a
candidate. Among these new wide companions to planet-host stars, we discovered
a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which
hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new
stellar M dwarf companions to one G and one metal-rich K star. We infer stellar
and substellar binary frequencies for our complete sample of 37 targets of
5.4+/-3.8% and 2.7+/-2.7% (1 sigma confidence level), respectively, for
projected physical separations larger than ~60-160 au assuming the range of
distances of planet-host stars (24-75 pc). These values are comparable to the
frequencies of non planet-host stars. We find that the period-eccentricity
trend holds with a lack of multiple systems with planets at large
eccentricities (e > 0.2) for periods less than 40 days. However, the lack of
planets more massive than 2.5 Jupiter masses and short periods (<40 days)
orbiting single stars is not so obvious due to recent discoveries by
ground-based transit surveys and space missions.Comment: Accepted for publication in A&A, 13 pages, 5 figures, 3 tables,
optical spectra will be available at CDS Strasbour
Physically meaningful and not so meaningful symmetries in Chern-Simons theory
We explicitly show that the Landau gauge supersymmetry of Chern-Simons theory
does not have any physical significance. In fact, the difference between an
effective action both BRS invariant and Landau supersymmetric and an effective
action only BRS invariant is a finite field redefinition. Having established
this, we use a BRS invariant regulator that defines CS theory as the large mass
limit of topologically massive Yang-Mills theory to discuss the shift k \to
k+\cv of the bare Chern-Simons parameter in conncection with the Landau
supersymmetry. Finally, to convince ourselves that the shift above is not an
accident of our regularization method, we comment on the fact that all BRS
invariant regulators used as yet yield the same value for the shift.Comment: phyzzx, 21 pages, 2 figures in one PS fil
Thermal stability of copper nitride thin films: The role of nitrogen migration
The atomic composition, structural, morphological, and optical properties of N-rich copper nitride thin films have been investigated prior to and after annealing them in vacuum at temperatures up to 300 °C. Films were characterized by means of ion-beam analysis (IBMA), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry techniques (SE). The data reveal that even when the total (integrated over the whole thickness) atomic composition of the films remains constant, nitrogen starts to migrate from the bulk to the film surface, without out-diffusing, at temperatures as low as 100 °C. This migration leads to two chemical phases with different atomic concentration of nitrogen, lattice parameters, and crystallographic orientation but with the same crystal structure. XRD experimental and Rietveld refined data seem to confirm that nitrogen excess accommodates in interstitial locations within the anti-ReO3 crystal lattice forming a solid solution. The influence of nitrogen migration on the optical (electronic) properties of the films will be discusse
A multi-shot target-wheel assembly for high-repetition-rate, laser-driven proton acceleration
A multi-shot target assembly and automatic alignment procedure for
laser-plasma proton acceleration at high-repetition-rate are introduced. The
assembly is based on a multi-target rotating wheel capable of hosting 5000
targets, mounted on a three-dimensional motorised stage to allow rapid
replenishment and alignment of the target material between laser irradiations.
The automatic alignment procedure consists of a detailed mapping of the impact
positions at the target surface prior to the irradiation that ensures stable
operation of the target, which alongside the purpose-built design of the target
wheel, enable the operation at rates up to 10 Hz. Stable and continuous
laser-driven proton acceleration is demonstrated, with observed cut-off energy
stability about 15%.Comment: 8 pages, 5 figure
An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of
the Ising spin glass in three dimensions for eleven orders of magnitude. The
use of integral estimators for the coherence and correlation lengths allows us
to study dynamic heterogeneities and the presence of a replicon mode and to
obtain safe bounds on the Edwards-Anderson order parameter below the critical
temperature. We obtain good agreement with experimental determinations of the
temperature-dependent decay exponents for the thermoremanent magnetization.
This magnitude is observed to scale with the much harder to measure coherence
length, a potentially useful result for experimentalists. The exponents for
energy relaxation display a linear dependence on temperature and reasonable
extrapolations to the critical point. We conclude examining the time growth of
the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
Interacting Dipoles from Matrix Formulation of Noncommutative Gauge Theories
We study the IR behavior of noncommutative gauge theory in the matrix
formulation. We find that in this approach, the nature of the UV/IR mixing is
easily understood, which allows us to perform a reliable calculation of the
quantum effective action for the long wavelength modes of the noncommutative
gauge field. At one loop, we find that our description is weakly coupled only
in the supersymmetric theory. At two loops, we find non-trivial interaction
terms suggestive of dipole degrees of freedom. These dipoles exhibit a channel
duality reminiscent of string theory.Comment: LaTeX 11 pages, 4 figures; v.2 minor changes and some references
added; v.3 many more technical details added and significantly different
presentation, use REVTeX 4, to appear in PR
Critical Behavior of Three-Dimensional Disordered Potts Models with Many States
We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical
simulations (that severely slow down for increasing p) detect a very clear spin
glass phase transition. We evaluate the critical exponents and the critical
value of the temperature, and we use known results at lower values to
discuss how they evolve for increasing p. We do not find any sign of the
presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat.
Mec
- …