76 research outputs found

    Lurrun-irudiak: ur tantek, nola nanoegituratu ditzakete polimero arrunten gainazalak

    Get PDF
    In this work the forma tion of porous honeycomb-structured polymeric surfaces by the Breath Figure technique ha ve been studied. This is one of the most promising methods for the fabrication of homogeneous and hi ghly porous films from polymeric matrixes. These surfaces have wide number of potential applications such as biosensors or membrane separation.; Lan honetan, lurrun -irudien teknikaren bidezko abaraska itxurako gainazal polimeriko porotsuen eraketa aztertu da. Bere sinpletasunari esker, teknika hau matrize polimerikoetatik film porotsu eta homogeneoak lortzeko teknika oparoenen artekoa da. Gainazal hauek aplikazio potentzial ugari dituzte biosentsore edo banaketa mintz bezala

    Hybrid Organic-Inorganic Membranes for Photocatalytic Water Remediation

    Get PDF
    Mismanagement, pollution and excessive use have depleted the world’s water resources, producing a shortage that in some territories is extreme. In this context, the need for potable water prompts the development of new and more efficient wastewater treatment systems to overcome shortages by recovering and reusing contaminated water. Among the water treatment methods, membrane technology is considered one of the most promising. Besides, photocatalytic degradation has become an attractive and efficient technology for water and wastewater treatment. However, the use of unsupported catalysts has as its main impediment their separation from the water once treated. With this, providing the membranes with this photocatalyzed degradation capacity can improve the application of photocatalysts, since in many cases their application improves their recovery and reuse. This review describes the general photocatalytic processes of the main inorganic nanoparticles used as fillers in hybrid polymeric membranes. In addition, the most recent hybrid organic–inorganic membranes are reviewed. Finally, the membranes formed by metal–organic frameworks that can be considered one of the newest and most versatile developments are described.This research was funded by MINECOG (MAT2017-89553-P), UPV/EHU and Fundación Vital funding within the project “PROYECTOS DE INVESTIGACIÓN UPV/EHU-FUNDACIÓN VITAL FUNDAZIOA 2020” (VITAL20/26) and Basque Government (ELKARTEK, KK-2021/00082; KK-2020/00019)

    Energetic study of ultrasonic wettability enhancement

    Get PDF
    [EN]Many industrial and biological interfacial processes, such as welding and breathing depend directly on wettability and surface tension phenomena. The most common methods to control the wettability are based on modifying the properties of the fluid or the substrate. The present work focuses on the use of high-frequency acoustic waves (ultrasound) for the same purpose. It is well known that ultrasound can effectively clean a surface by acoustic cavitation, hence ultrasonic cleaning technology. Besides the cleaning process itself, many authors have observed an important wettability enhancement when liquids are exposed to low and high (ultrasonic) frequency vibration. Ultrasound goes one step further as it can instantly adjust the contact angle by tuning the vibration amplitude, but there is still a lack of comprehension about the physical principles that explain this phenomenon. To shed light on it, a thermodynamic model describing how ultrasound decreases the contact angle in a three-phase wetting system has been developed. Moreover, an analytical and experimental research has been carried out in order to demonstrate that ultrasound is an important competitor to surfactants in terms of energy efficiency and environmental friendliness.The projects leading to this research have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N° 654479 WASCOP and N°792103 SOLWARIS

    Non-Immersion Ultrasonic Cleaning: An Efficient Green Process for Large Surfaces with Low Water Consumption

    Get PDF
    Ultrasonic cleaning is a developed and widespread technology used in the cleaning industry. The key to its success over other cleaning methods lies in its capacity to penetrate seemingly inaccessible, hard-to-reach corners, cleaning them successfully. However, its major drawback is the need to immerse the product into a tank, making it impossible to work with large or anchored elements. With the aim of revealing the scope of the technology, this paper will attempt to describe a more innovative approach to cleaning large area surfaces (walls, floors, façades, etc.) which involves applying ultrasonic cavitation onto a thin film of water, which is then deposited onto a dirty surface. Ultrasonic cleaning is an example of the proliferation of green technology, requiring 15 times less water and 115 times less power than conventional high-pressurized waterjet cleaning mechanisms. This paper will account for the physical phenomena that govern this new cleaning mechanism and the competition it poses towards more conventional pressurized waterjet technology. Being easy to use as a measure of success, specular surface cleaning has been selected to measure the degree of cleanliness (reflectance) as a function of the process’s parameters. A design of experiments has been developed in line with the main process parameters: amplitude, gap, and sweeping speed. Regression models have also been used to interpret the results for different degrees of soiling. The work concludes with the finding that the proposed new cleaning technology and process can reach up to 98% total cleanliness, without the use of any chemical product and with very low water and power consumption.This research was funded by European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 654479 WASCOP and Nº 792103 SOLWAR

    Formulation of carbopol®/Poly(2-ethyl-2-oxazoline)s mucoadhesive tablets for buccal delivery of hydrocortisone

    Get PDF
    Poly(2-ethyl-2-oxazoline) has become an excellent alternative to the use of poly(ethylene glycol) in pharmaceutical formulations due to its valuable physicochemical and biological properties. This work presents a formulation of poorly-water soluble drug, hydrocortisone, using interpolymer complexes and physical blends of poly(2-ethyl-2-oxazoline)s and two Carbopols® (Carbopol 974 and Carbopol 971) for oromucosal administration. The swelling, hydrocortisone release and mucoadhesive properties of a series of tablet formulations obtained by combination of different Carbopols with poly(2-ethyl-2-oxazoline)s of different molecular weights have been evaluated in vitro

    Sustainable Bio-Based Epoxy Resins with Tunable Thermal and Mechanic Properties and Superior Anti-Corrosion Performance

    Get PDF
    Bio-based epoxy thermoset resins have been developed from epoxidized soybean oil (ESO) cured with tannic acid (TA). These two substances of vegetable origin have been gathering attention due to their accessibility, favorable economic conditions, and convenient chemical functionalization. TA’s suitable high phenolic functionalization has been used to crosslink ESO by adjusting the −OH (from TA):epoxy (from ESO) molar ratio from 0.5:1 to 2.5:1. By means of Fourier-transform infrared spectroscopy, resulting in thermosets that evidenced optimal curing properties under moderate conditions (150–160 °C). The thermogravimetric analysis of the cured resins showed thermal stability up to 261 °C, with modulable mechanical and thermal properties determined by differential scanning calorimetry, dynamical mechanical thermal analysis, and tensile testing. Water contact angle measurements (83–87°) and water absorption tests (0.6–4.5 initial weight% intake) were performed to assess the suitability of the resins as waterproof coatings. Electrochemical impedance spectroscopy measurements were performed to characterize the anti-corrosive capability of these coatings on carbon steel substrates. Excellent barrier properties have been demonstrated due to the high electrical isolation and water impermeability of these oil-based coatings, without signs of deterioration over 6 months of immersion in a 3.5 wt.% NaCl solution. These results demonstrate the suitability of the developed materials as anti-corrosion coatings for specific applications.R.T. wants to thank the Basque Government for funding under an FPI grant (PRE_2023_2_0276). The authors acknowledge the Basque Government for Grupos Consolidados grant IT1756-22, ELKARTEK program KK-2021/00082, KK-2021/00131, and KK-2022/00109

    The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique

    Get PDF
    Polymeric thin films patterned with honeycomb structures were prepared from poly(x-chlorostyrene) and statistical poly(x-chlorostyrene-co-styrene) copolymers by static breath figure method. Each polymeric sample was synthesized by free radical polymerization and its solution in tetrahydrofuran cast on glass wafers under 90% relative humidity (RH). The effect of the chorine substitution in the topography and conformational entropy was evaluated. The entropy of each sample was calculated by using Voronoi tessellation. The obtained results revealed that these materials could be a suitable toolbox to develop a honeycomb patterns with a wide range of pore sizes for a potential use in contact guidance induced culture.This research was funded by the Government of Basque Country, grant ELKARTEK FRONTIERS KK-2017/0096 and grant Grupos de Investigacion IT718-13

    Shape Memory Hydrogels Based on Noncovalent Interactions

    Get PDF
    Shape memory polymers (SMPs) are polymeric materials that are capable of fixing temporary shape and recovering the permanent shape in response to external stimuli. In particular, supramolecular interactions and dynamic covalent bond have recently been introduced as temporary switches to construct supramolecular shape memory hydrogels (SSMHs), arising as promising materials since they can exhibit excellent cycled shape memory behavior at room temperature. On the other hand, hydrogels, conventionally, are flexible but sometimes extremely soft, and they can be easily damaged under external force, which could limit their long-time application. Therefore, self-healing hydrogels that can be rapidly auto-repaired when the damage occurs have been recently developed to solve this problem. These materials present more than one triggering stimulus that can be used to induce the shape memory and self-healing effect. These driven forces can be originated from hydrogen bonds, hydrophobic interactions, and reversible covalent bonds, among others. Beyond all these, hybrid organic-inorganic interactions represent an interesting possibility due to their versatility and favorable properties that allow the fabrication of multiresponsive hydrogels. In this chapter, shape memory hydrogels based on noncovalent interactions are described
    corecore