39 research outputs found

    Methylthioadenosine

    Get PDF
    5'-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. MTA is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. This compound is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. Abundant evidence has accumulated over time suggesting that MTA can affect cellular processes in many ways. MTA has been shown to influence numerous critical responses of the cell including regulation of gene expression, proliferation, differentiation and apoptosis. Although most of these responses have been observed at the pharmacological level, their specificity makes it tempting to speculate that endogenous MTA could play a regulatory role in the cell. Finally, observations carried out in models of liver damage and cancer demonstrate a therapeutic potential for MTA that deserves further consideration

    NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels

    Get PDF
    BACKGROUND & AIMS: Liver regeneration is a fundamental response of this organ to injury. Hepatocyte proliferation is triggered by growth factors, such as hepatocyte growth factor. However, hepatocytes need to be primed to react to mitogenic signals. It is known that nitrous oxide (NO), generated after partial hepatectomy, plays an important role in hepatocyte growth. Nevertheless, the molecular mechanisms behind this priming event are not completely known. S-adenosylmethionine (AdoMet) synthesis by methionine adenosyltransferase is the first step in methionine metabolism, and NO regulates hepatocyte S-adenosylmethionine levels through specific inhibition of this enzyme. We have studied the modulation of hepatocyte growth factor-induced proliferation by NO through the regulation of S-adenosylmethionine levels. METHODS: Studies were conducted in cultured rat hepatocytes isolated by collagenase perfusion, which triggers NO synthesis. RESULTS: The mitogenic response to hepatocyte growth factor was blunted when inducible NO synthase was inhibited; this process was overcome by the addition of an NO donor. This effect was dependent on methionine concentration in culture medium and intracellular S-adenosylmethionine levels. Accordingly, we found that S-adenosylmethionine inhibits hepatocyte growth factor-induced cyclin D1 and D2 expression, activator protein 1 induction, and hepatocyte proliferation. CONCLUSIONS: Together our findings indicate that NO may switch hepatocytes into a hepatocyte growth factor-responsive state through the down-regulation of S-adenosylmethionine levels

    Novel role for amphiregulin in protection from liver injury

    Get PDF
    Clinically, the Fas and Fas ligand system plays a central role in the development of hepatocyte apoptosis, a process contributing to a broad spectrum of liver diseases. Therefore, the development of therapies aimed at the inhibition of hepatocyte apoptosis is a major issue. Activation of the epidermal growth factor receptor has been shown to convey survival signals to the hepatocyte. To learn about the endogenous response of epidermal growth factor receptor ligands during Fas-mediated liver injury we investigated the expression of epidermal growth factor, transforming growth factor alpha, heparin-binding epidermal growth factor-like growth factor, betacellulin, epiregulin, and amphiregulin in the liver of mice challenged with Fas-agonist antibody. Amphiregulin expression, barely detectable in healthy liver, was significantly up-regulated. Amphiregulin administration abrogated Fas-mediated liver injury in mice and showed direct anti-apoptotic effects in primary hepatocytes. Amphiregulin activated the Akt and signal transducer and activator of transcription-3 survival pathways, and up-regulated Bcl-xL expression. Amphiregulin knock-out mice showed signs of chronic liver damage in the absence of any noxious treatment, and died faster than wild type mice in response to lethal doses of Fas-agonist antibody. In contrast, these mice were more resistant against sublethal liver damage, supporting the hypothesis that chronic liver injury can precondition hepatocytes inducing resistance to subsequent cell death. These results show that amphiregulin is a protective factor induced in response to liver damage and that it may be therapeutic in liver diseases

    S-adenosylmethionine regulates MAT1A and MAT2A gene expression in cultured rat hepatocytes: a new role for S-adenosylmethionine in the maintenance of the differentiated status of the liver

    Get PDF
    Methionine metabolism starts with the formation of S-adenosylmethionine (AdoMet), the most important biological methyl donor. This reaction is catalyzed by methionine adenosyltransferase (MAT). MAT is the product of two different genes: MAT1A, which is expressed only in the adult liver, and MAT2A, which is widely distributed, expressed in the fetal liver, and replaces MAT1A in hepatocarcinoma. In the liver, preservation of high expression of MAT1A and low expression of MAT2A is critical for the maintenance of a functional and differentiated organ. Here we describe that in cultured rat hepatocytes MAT1A expression progressively decreased, as described for other liver-specific genes, and MAT2A expression was induced. We find that this switch in gene expression was prevented by adding AdoMet to the culture medium. We also show that in cultured hepatocytes with decreased MAT1A expression AdoMet addition markedly increased MAT1A transcription in a dose-dependent fashion. This effect of AdoMet was mimicked by methionine, and blocked by 3-deazaadenosine and L-ethionine, but not D-ethionine, indicating that the effect was specific and mediated probably by a methylation reaction. These findings identify AdoMet as a key molecule that differentially regulates MAT1A and MAT2A expression and helps to maintain the differentiated status of the hepatocyte

    Expression of Wilms' tumor suppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor 4 and hepatocellular function

    Get PDF
    The Wilms' tumor suppressor WT1 is a transcriptional regulator present in the fetal but not in the mature liver. Its expression and functional role in liver diseases remains unexplored. In this study, we analyzed WT1 expression by reverse-transcription polymerase chain reaction (RT-PCR) and by immunohistochemistry in normal and diseased livers. In addition, we performed in vitro studies in isolated rat hepatocytes to investigate WT1 regulation and function. We detected WT1 messenger RNA (mRNA) in 18% of normal livers, 17% of chronic hepatitis with minimal fibrosis, 49% of chronic hepatitis with bridging fibrosis, and 71% of cirrhotic livers. In cirrhosis, WT1 immunoreactivity was localized to the nucleus of hepatocytes. WT1 mRNA abundance correlated inversely with prothrombin time (P =.04) and directly with serum bilirubin (P =.002) and with the MELD score (P =.001) of disease severity. In rats, WT1 expression was present in fetal hepatocytes and in the cirrhotic liver but not in normal hepatic tissue. In vitro studies showed that isolated primary hepatocytes express WT1 when stimulated with transforming growth factor beta (TGF-beta) or when the cells undergo dedifferentiation in culture. Moreover, we found that WT1 down-regulates hepatocyte nuclear factor 4 (HNF-4), a factor that is essential to maintain liver function and metabolic regulation in the mature organ. Hepatic expression of HNF-4 was impaired in advanced human cirrhosis and negatively correlated with WT1 mRNA levels (P =.001). In conclusion, we show that WT1 is induced by TGF-beta and down-regulates HNF-4 in liver cells. WT1 is reexpressed in the cirrhotic liver in relation to disease progression and may play a role in the development of hepatic insufficiency in cirrhosis

    Transformed but not normal hepatocytes express UCP2

    Get PDF
    Uncoupling protein 2 (UCP2) expression in liver is restricted to non-parenchymal cells. By means of differential display screening between normal rat liver and H4IIE hepatoma cells we have isolated a cDNA clone encompassing part of UCP2 cDNA. Northern blot analysis revealed that UCP2 is expressed in some hepatocarcinoma cell lines, while it is absent in adult hepatocytes. UCP2 mRNA in H4IIE cells was downregulated when cells were cultured for 36 h in 0.1% serum and its expression was restored upon addition of 10% serum or phorbol esters. Hypomethylation of UCP2 was observed in transformed UCP2 expressing cells. Our results indicate that UCP2 is expressed in some hepatocarcinoma cell lines and that serum components may participate in maintaining elevated UCP2 levels

    Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine

    Get PDF
    Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the most important biological methyl donor. Liver MAT I/III is the product of the MAT1A gene. Hepatic MAT I/III activity and MAT1A expression are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon neoplastic transformation of the liver. In the present work, we evaluated whether MAT1A expression could be targeted by the polycyclic arylhydrocarbon (PAH) 3-methylcholanthrene (3-MC) in rat liver and cultured hepatocytes. MAT1A mRNA levels were reduced by 50% following in vivo administration of 3-MC to adult male rats (100 mg/kg, p.o., 4 days' treatment). This effect was reproduced in a time- and dose-dependent fashion in cultured rat hepatocytes, and was accompanied by the induction of cytochrome P450 1A1 gene expression. This action of 3-MC was mimicked by other PAHs such as benzo[a]pyrene and benzo[e]pyrene, but not by the model arylhydrocarbon receptor (AhR) activator 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3-MC inhibited transcription driven by a MAT1A promoter-reporter construct transfected into rat hepatocytes, but MAT1A mRNA stability was not affected. We recently showed that liver MAT1A expression is induced by AdoMet in cultured hepatocytes. Here, we observed that exogenously added AdoMet prevented the negative effects of 3-MC on MAT1A expression. Taken together, our data demonstrate that liver MAT1A gene expression is targeted by PAHs, independently of AhR activation. The effect of AdoMet may be part of the protective action of this molecule in liver damage

    Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis

    Get PDF
    Elevated plasma levels of homocysteine have been shown to interfere with normal cell function in a variety of tissues and organs, such as the vascular wall and the liver. However, the molecular mechanisms behind homocysteine effects are not completely understood. In order to better characterize the cellular effects of homocysteine, we have searched for changes in gene expression induced by this amino acid. Our results show that homocysteine is able to induce the expression and synthesis of the tissue inhibitor of metalloproteinases-1 (TIMP-1) in a variety of cell types ranging from vascular smooth muscle cells to hepatocytes, HepG2 cells and hepatic stellate cells. In this latter cell type, homocysteine also stimulated alpha 1(I) procollagen mRNA expression. TIMP-1 induction by homocysteine appears to be mediated by its thiol group. Additionally, we demonstrate that homocysteine is able to promote activating protein-1 (AP-1) binding activity, which has been shown to be critical for TIMP-1 induction. Our findings suggest that homocysteine may alter extracellular matrix homeostasis on diverse tissular backgrounds besides the vascular wall. The liver could be considered as another target for such action of homocysteine. Consequently, the elevated plasma levels of this amino acid found in different pathological or nutritional circumstances may cooperate with other agents, such as ethanol, in the onset of liver fibrosis

    L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine

    Get PDF
    In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulation of MAT2A gene expression by l-methionine availability using HepG2 cells. In l-methionine-deficient cells, MAT2A gene expression is rapidly induced, and methionine adenosyltransferase activity is increased. Restoration of l-methionine rapidly down-regulates MAT2A mRNA levels; for this effect, l-methionine needs to be converted into AdoMet. This novel action of AdoMet is not mediated through a methyl transfer reaction. MAT2A gene expression was also regulated by 5'-methylthioadenosine, but this was dependent on 5'-methylthioadenosine conversion to methionine through the salvage pathway. The transcription rate of the MAT2A gene remained unchanged during l-methionine starvation; however, its mRNA half-life was significantly increased (from 100 min to more than 3 h). The effect of l-methionine withdrawal on MAT2A mRNA stabilization requires both gene transcription and protein synthesis. We conclude that MAT2A gene expression is modulated as an adaptive response of the cell to l-methionine availability through its conversion to AdoMet

    Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I

    Get PDF
    We have previously shown that the administration of low doses of insulin-like growth factor-I (IGF-I) to CCl4-cirrhotic rats improves liver function and reduces fibrosis. To better understand the mechanisms behind the hepatoprotective effects of IGF-I, and to identify those genes whose expression is affected in cirrhosis and after IGF-1 treatment, we have performed differential display of mRNA analysis by means of polymerase chain reaction (PCR) in livers from control and CCl4-cirrhotic rats treated or not with IGF-I. We have identified 16 genes that were up- or down-regulated in the cirrhotic liver. IGF-I treatment partially normalized the expression of eight of these genes, including serine proteinase inhibitors such as serpin-2 and alpha-1-antichymotripsin, alpha-1-acid glycoprotein, and alpha-2u-globulin. Additionally, we show that IGF-I enhanced the regenerative activity in the cirrhotic liver, as determined by the increased expression of the proliferating cell nuclear antigen (PCNA). Finally, IGF-I treatment partially restored the expression of growth hormone receptor (GHR) and the levels of global genomic DNA methylation, which are reduced in human and experimental cirrhosis. Taken together, our observations confirm the hepatoprotective effects of IGF-I, and suggest that this action can be exerted in part through the normalization of liver gene expression, growth hormone (GH) responsiveness and global genomic DNA methylation
    corecore