38,837 research outputs found

    Reproducible and User-Controlled Software Environments in HPC with Guix

    Get PDF
    Support teams of high-performance computing (HPC) systems often find themselves between a rock and a hard place: on one hand, they understandably administrate these large systems in a conservative way, but on the other hand, they try to satisfy their users by deploying up-to-date tool chains as well as libraries and scientific software. HPC system users often have no guarantee that they will be able to reproduce results at a later point in time, even on the same system-software may have been upgraded, removed, or recompiled under their feet, and they have little hope of being able to reproduce the same software environment elsewhere. We present GNU Guix and the functional package management paradigm and show how it can improve reproducibility and sharing among researchers with representative use cases.Comment: 2nd International Workshop on Reproducibility in Parallel Computing (RepPar), Aug 2015, Vienne, Austria. http://reppar.org

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    PBO Fibres: from saliling design towards architectural performance

    Full text link
    p. 3013-3023PBO fibres, also called "high-performance" polymer fibres, are a group of materials known as "rigid rods". Through this work it is pretended to make some considerations about the use of these new generation fibres. Poly (p-phenylene-2.6-benzobisoxazole)(PBO) is rigid-rod isotropic crystal polymer. PBO fibre is a high performance fibre developed by TOYOBO (Japan) PBO fibre is quite flexible and has very soft handling, in spite of its extremely high mechanical properties. Over the past ten years Future Fibres Company has pioneered the use of PBO for yacht rigging and has proven it to provide remarkable performance and longevity. Their method of producing these PBO cables delivers the lightest, smallest cables available on the market today. The PBO cable is formed by combining the incredible properties of PBO (poly(p-phenylene-2,6- benzobisoxazole)) fibre with the simple yet undeniably reliable process of continuous winding. A PBO cable is dry fibre tightly compacted and does not rely on a resin matrix that, if impacted, can be compromised. The cover of the cable is a vital component and whilst PBO is an excellent material for yacht rigging purposes, due to its extreme strength, low elongation and general robustness it must be protected from sunlight and seawater. Future Fibres has perfected its cover design that comprises a consolidating film, environmental protection layer and a customizable braided cover that can be tailored to suit any specific application. PBO has great potential to be used in construction or rehabilitation applications. At the same time the fibres, following further testing, would open up several design opportunities for high quality architectural projects.Gough, CE.; Pobo Blasco, M.; Ruiz Checa, JR. (2009). PBO Fibres: from saliling design towards architectural performance. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/670

    Polyakov loop in chiral quark models at finite temperature

    Get PDF
    We describe how the inclusion of the gluonic Polyakov loop incorporates large gauge invariance and drastically modifies finite temperature calculations in chiral quark models after color neutral states are singled out. This generates an effective theory of quarks and Polyakov loops as basic degrees of freedom. We find a strong suppression of finite temperature effects in hadronic observables triggered by approximate triality conservation (Polyakov cooling), so that while the center symmetry breaking is exponentially small with the constituent quark mass, chiral symmetry restoration is exponentially small with the pion mass. To illustrate the point we compute some low energy observables at finite temperature and show that the finite temperature corrections to the low energy coefficients are NcN_c suppressed due to color average of the Polyakov loop. Our analysis also shows how the phenomenology of chiral quark models at finite temperature can be made compatible with the expectations of chiral perturbation theory. The implications for the simultaneous center symmetry breaking-chiral symmetry restoration phase transition are also discussed.Comment: 24 pages, 8 ps figures. Figure and appendix added. To appear in Physical Review

    Chiral Symmetry and s-wave Low-Lying Meson-Baryon Resonances

    Full text link
    The s−s-wave meson-baryon scattering is analyzed for the isospin-strangeness I=1/2,S=0I=1/2, S=0 and I=0,S=−1I=0,S=-1 sectors, in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry. For both sectors, four channels have been considered: πN\pi N, ηN\eta N, KΛK \Lambda, KΣK \Sigma and πΣ\pi \Sigma, KˉN\bar K N, ηΛ\eta \Lambda, KΞK \Xi, respectively. The needed two particle irreducible matrix amplitudes are taken from lowest order Chiral Perturbation Theory in a relativistic formalism. There appear undetermined low energy constants, as a consequence of the renormalization of the amplitudes, which are obtained from fits to the available data: elastic πN\pi N phase-shifts, π−p→ηn\pi^- p \to \eta n and π−p→K0Λ\pi^- p \to K^0 \Lambda cross sections and to πΣ→πΣ\pi\Sigma\to\pi\Sigma mass-spectrum, the elastic KˉN→KˉN\bar K N \to \bar K N and KˉN→πΣ \bar K N\to \pi \Sigma tt--matrices and to the K−p→ηΛ K^- p \to \eta \Lambda cross section data. The position and residues of the complex poles in the second Riemann sheet of the scattering amplitude determine masses, widths and branching ratios of the S11−S_{11}- NN(1535) and −N-N(1650) and S01−S_{01}- Λ\Lambda(1405) and −Λ-\Lambda(1670) resonances, in reasonable agreement with experiment. A good overall description of data, from threshold up to around 2 GeV is achieved despite the fact that three-body channels have not been explicitly included.Comment: 5 Pages, 2 figures, invited contribution to Focus Session on Nature of Threshold N*, to be published in Proceedings of Nstar 2002, Pittsburgh, USA, October 9-12, 2002 (World Scientific

    Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction

    Full text link
    We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a non-Fermi liquid phase. A transition into a Fermi liquid phase could then be achieved, by means of mechanical stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization group results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.Comment: 7 pages, 7 figure
    • …
    corecore