7 research outputs found

    PRRT2-related phenotypes in patients with a 16p11.2 deletion

    Get PDF
    We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33 patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2 sequence variant: BIE was present in four (p = 0.069), PKD in six (p < 0.001) and PKD/IC in two (p = 0.067). Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE, PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively. Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2 sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants in patients not presenting the PRRT2-related phenotypes

    The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome

    Get PDF
    Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods: Clinicians entered clinical data in an extensive web-based survey. Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features

    An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities

    No full text
    Background: C-type natriuretic peptide (CNP)/natriuretic peptide receptor 2 (NPR2) signaling is essential for long bone growth. Enhanced CNP production caused by chromosomal translocations results in tall stature, a Marfanoid phenotype, and skeletal abnormalities.Asimilar phenotype was described in a family with an activating NPR2 mutation within the guanylyl cyclase domain. Case: Here we describe an extremely tall male without skeletal deformities, with a novel NPR2 mutation (p.Arg655Cys) located in the kinase homology domain. Objectives: The objective of the study was to investigate the functional and structural effects of the NPR2 mutation. Methods: Guanylyl cyclase activities of wild-type vs mutant NPR2 were analyzed in transfected human embryonic kidney 293 cells and in skin fibroblasts. The former were also used to study possible interactions between both isoforms. Homology modeling was performed to understand the molecular impact of the mutation. Results: CNP-stimulated cGMP production by the mutant NPR2 was markedly increased in patient skin fibroblasts and transfected human embryonic kidney 293 cells. The stimulatory effects of ATP on CNP-dependent guanylyl cyclase activity were augmented, suggesting that this novel mutation enhances both the responsiveness of NPR2 to CNP and its allosteric modulation/stabilization by ATP. Coimmunoprecipitation showed that wild-type and mutant NPR2 can form stable heterodimers, suggesting a dominant-positive effect. In accordance with augmented endogenous receptor activity, plasma N-terminal pro-CNP (a marker of CNP production in tissues) was reduced in the proband. Conclusions:Wereport the first activating mutation within the kinase homology domain of NPR2, resulting in extremely tall stature. Our observations emphasize the important role of this domain in the regulation of guanylyl cyclase activity and bone growth in response to CNP

    De Novo SOX6 Variants Cause a Neurodevelopmental Syndrome Associated with ADHD, Craniosynostosis, and Osteochondromas.

    No full text
    SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features
    corecore