38 research outputs found

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    SoilGrids1km — Global Soil Information Based on Automated Mapping

    Get PDF
    Background: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings: We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license

    Effects of agricultural management practices on soil quality : A review of long-term experiments for Europe and China

    Get PDF
    In this paper we present effects of four paired agricultural management practices (organic matter (OM) addition versus no organic matter input, no-tillage (NT) versus conventional tillage, crop rotation versus monoculture, and organic agriculture versus conventional agriculture) on five key soil quality indicators, i.e., soil organic matter (SOM) content, pH, aggregate stability, earthworms (numbers) and crop yield. We have considered organic matter addition, no-tillage, crop rotation and organic agriculture as “promising practices”; no organic matter input, conventional tillage, monoculture and conventional farming were taken as the respective references or “standard practice” (baseline). Relative effects were analysed through indicator response ratio (RR) under each paired practice. For this we considered data of 30 long-term experiments collected from 13 case study sites in Europe and China as collated in the framework of the EU-China funded iSQAPER project. These were complemented with data from 42 long-term experiments across China and 402 observations of long-term trials published in the literature. Out of these, we only considered experiments covering at least five years. The results show that OM addition favourably affected all the indicators under consideration. The most favourable effect was reported on earthworm numbers, followed by yield, SOM content and soil aggregate stability. For pH, effects depended on soil type; OM input favourably affected the pH of acidic soils, whereas no clear trend was observed under NT. NT generally led to increased aggregate stability and greater SOM content in upper soil horizons. However, the magnitude of the relative effects varied, e.g. with soil texture. No-tillage practices enhanced earthworm populations, but not where herbicides or pesticides were applied to combat weeds and pests. Overall, in this review, yield slightly decreased under NT. Crop rotation had a positive effect on SOM content and yield; rotation with ley very positively influenced earthworms’ numbers. Overall, crop rotation had little impact on soil pH and aggregate stability − depending on the type of intercrop; alternatively, rotation of arable crops only resulted in adverse effects. A clear positive trend was observed for earthworm abundance under organic agriculture. Further, organic agriculture generally resulted in increased aggregate stability and greater SOM content. Overall, no clear trend was found for pH; a decrease in yield was observed under organic agriculture in this review

    Uncertainty quantification of interpolated maps derived from observations with different accuracy levels

    No full text
    Most practical applications of spatial interpolation ignore that some measurements may be more accurate than others. As a result all measurements are treated equally important, while it is intuitively clear that more accurate measurements should carry more weight than less accurate measurements. Geostatistics provides the tools to perform spatial interpolation using measurements with different accuracy levels. In this short paper we use these tools to explore the sensitivity of interpolated maps to differences in measurement accuracy for a case study on mapping topsoil clay content in Namibia using kriging with external drift (KED). We also compare the kriging variance maps and show how incorporation of different measurement accuracy levels influences estimation of the KED model parameters.</p

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    Mapping topsoil organic carbon concentrations and stocks for Tanzania

    No full text
    Tanzania is one of the countries that has embarked on a national programme under the United Nations collaborative initiative on Reducing Emissions from Deforestation and forest Degradation (REDD). Tanzania is currently developing the capacity to enter into a carbon monitoring REDD+ regime. In this context spatially representative soil carbon datasets and accurate predictive maps are important for determining the soil organic carbon pool. The main objective of this study was to model and map the SOC stock for the 0–30-cm soil layer to provide baseline information for REDD+ purposes. Topsoil data of over 1400 locations spread throughout Tanzania from the National Forest Monitoring and Assessment (NAFORMA), were used, supplemented by two legacy datasets, to calibrate simple kriging with varying local means models. Maps of SOC concentrations (g kg−1) were generated for the 0–10-cm, 10–20-cm, 20–30-cm, 0–30-cm layers, and maps of bulk density and SOC stock (kg m−2) for the 0–30-cm layer. Two approaches for modelling SOC stocks were considered here: the calculate-then-model (CTM) approach and the model-then-calculate approach (MTC). The spatial predictions were validated by means of 10-fold cross-validation. Uncertainty associated to the estimated SOC stocks was quantified through conditional Gaussian simulation. Estimates of SOC stocks for the main land cover classes are provided. Environmental covariates related to soil and terrain proved to be the strongest predictors for all properties modelled. The mean predicted SOC stock for the 0–30-cm layer was 4.1 kg m−2 (CTM approach) translating to a total national stock of 3.6 Pg. The MTC approach gave similar results. The largest stocks are found in forest and grassland ecosystems, while woodlands and bushlands contain two thirds of the total SOC stock. The root mean squared error for the 0–30-cm layer was 1.8 kg m−2, and the R2-value was 0.51. The R2-value of SOC concentration for the 0–30-cm layer was 0.60 and that of bulk density 0.56. The R2-values of the predicted SOC concentrations for the 10-cm layers vary between 0.46 and 0.54. The 95% confidence interval of the predicted average SOC stock is 4.01–4.15 kg m−2, and that of the national total SOC stock 3.54–3.65 Pg. Uncertainty associated with SOC concentration had the largest contribution to SOC stock uncertainty. These findings have relevance for the ongoing REDD+ readiness process in Tanzania by supplementing the previous knowledge of significant carbon pools. The soil organic carbon pool makes up a relatively large proportion of carbon in Tanzania and is therefore an important carbon pool to consider alongside the ones related to the woody biomass. Going forward, the soil organic carbon data can potentially be used in the determination of reference emission levels and the future monitoring, reporting and verification of organic carbon pools

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available

    Mapping topsoil organic carbon concentrations and stocks for Tanzania

    No full text
    Tanzania is one of the countries that has embarked on a national programme under the United Nations collaborative initiative on Reducing Emissions from Deforestation and forest Degradation (REDD). Tanzania is currently developing the capacity to enter into a carbon monitoring REDD+ regime. In this context spatially representative soil carbon datasets and accurate predictive maps are important for determining the soil organic carbon pool. The main objective of this study was to model and map the SOC stock for the 0–30-cm soil layer to provide baseline information for REDD+ purposes. Topsoil data of over 1400 locations spread throughout Tanzania from the National Forest Monitoring and Assessment (NAFORMA), were used, supplemented by two legacy datasets, to calibrate simple kriging with varying local means models. Maps of SOC concentrations (g kg−1) were generated for the 0–10-cm, 10–20-cm, 20–30-cm, 0–30-cm layers, and maps of bulk density and SOC stock (kg m−2) for the 0–30-cm layer. Two approaches for modelling SOC stocks were considered here: the calculate-then-model (CTM) approach and the model-then-calculate approach (MTC). The spatial predictions were validated by means of 10-fold cross-validation. Uncertainty associated to the estimated SOC stocks was quantified through conditional Gaussian simulation. Estimates of SOC stocks for the main land cover classes are provided. Environmental covariates related to soil and terrain proved to be the strongest predictors for all properties modelled. The mean predicted SOC stock for the 0–30-cm layer was 4.1 kg m−2 (CTM approach) translating to a total national stock of 3.6 Pg. The MTC approach gave similar results. The largest stocks are found in forest and grassland ecosystems, while woodlands and bushlands contain two thirds of the total SOC stock. The root mean squared error for the 0–30-cm layer was 1.8 kg m−2, and the R2-value was 0.51. The R2-value of SOC concentration for the 0–30-cm layer was 0.60 and that of bulk density 0.56. The R2-values of the predicted SOC concentrations for the 10-cm layers vary between 0.46 and 0.54. The 95% confidence interval of the predicted average SOC stock is 4.01–4.15 kg m−2, and that of the national total SOC stock 3.54–3.65 Pg. Uncertainty associated with SOC concentration had the largest contribution to SOC stock uncertainty. These findings have relevance for the ongoing REDD+ readiness process in Tanzania by supplementing the previous knowledge of significant carbon pools. The soil organic carbon pool makes up a relatively large proportion of carbon in Tanzania and is therefore an important carbon pool to consider alongside the ones related to the woody biomass. Going forward, the soil organic carbon data can potentially be used in the determination of reference emission levels and the future monitoring, reporting and verification of organic carbon pools

    Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China

    No full text
    In this paper we present effects of four paired agricultural management practices (organic matter (OM) addition versus no organic matter input, no-tillage (NT) versus conventional tillage, crop rotation versus monoculture, and organic agriculture versus conventional agriculture) on five key soil quality indicators, i.e., soil organic matter (SOM) content, pH, aggregate stability, earthworms (numbers) and crop yield. We have considered organic matter addition, no-tillage, crop rotation and organic agriculture as “promising practices”; no organic matter input, conventional tillage, monoculture and conventional farming were taken as the respective references or “standard practice” (baseline). Relative effects were analysed through indicator response ratio (RR) under each paired practice. For this we considered data of 30 long-term experiments collected from 13 case study sites in Europe and China as collated in the framework of the EU-China funded iSQAPER project. These were complemented with data from 42 long-term experiments across China and 402 observations of long-term trials published in the literature. Out of these, we only considered experiments covering at least five years. The results show that OM addition favourably affected all the indicators under consideration. The most favourable effect was reported on earthworm numbers, followed by yield, SOM content and soil aggregate stability. For pH, effects depended on soil type; OM input favourably affected the pH of acidic soils, whereas no clear trend was observed under NT. NT generally led to increased aggregate stability and greater SOM content in upper soil horizons. However, the magnitude of the relative effects varied, e.g. with soil texture. No-tillage practices enhanced earthworm populations, but not where herbicides or pesticides were applied to combat weeds and pests. Overall, in this review, yield slightly decreased under NT. Crop rotation had a positive effect on SOM content and yield; rotation with ley very positively influenced earthworms’ numbers. Overall, crop rotation had little impact on soil pH and aggregate stability − depending on the type of intercrop; alternatively, rotation of arable crops only resulted in adverse effects. A clear positive trend was observed for earthworm abundance under organic agriculture. Further, organic agriculture generally resulted in increased aggregate stability and greater SOM content. Overall, no clear trend was found for pH; a decrease in yield was observed under organic agriculture in this review
    corecore