6 research outputs found

    Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces

    No full text
    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic–cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly­(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys­[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys­[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments

    Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport

    Get PDF
    The construction of multilength scaled hierarchical nanostructures from diverse natural components is critical in the progress toward all-natural nanocomposites with structural robustness and versatile added functionalities. Here, we report a spontaneous formation of peculiar “shish kebab” nanostructures with the periodic arrangement of silk fibroin domains along straight segments of cellulose nanofibers. We suggest that the formation of these shish kebab nanostructures is facilitated by the preferential organization of heterogeneous (β-sheets and amorphous silk) domains along the cellulose nanofiber driven by modulated axial distribution of crystalline planes, hydrogen bonding, and hydrophobic interactions as suggested by all-atom molecular dynamic simulations. Such shish kebab nanostructures enable the ultrathin membrane to possess open, transparent, mechanically robust interlocked networks with high mechanical performance with up to 30 GPa in stiffness and 260 MPa in strength. These nanoporous robust membranes allow for the extremely high water flux, up to 3.5 × 10<sup>4</sup> L h<sup>–1</sup> m<sup>–2</sup> bar<sup>–1</sup> combined with high rejection rate for various organic molecules, capability of capturing heavy metal ions and their further reduction into metal nanoparticles for added SERS detection capability and catalytic functionalities

    Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport

    No full text
    The construction of multilength scaled hierarchical nanostructures from diverse natural components is critical in the progress toward all-natural nanocomposites with structural robustness and versatile added functionalities. Here, we report a spontaneous formation of peculiar “shish kebab” nanostructures with the periodic arrangement of silk fibroin domains along straight segments of cellulose nanofibers. We suggest that the formation of these shish kebab nanostructures is facilitated by the preferential organization of heterogeneous (β-sheets and amorphous silk) domains along the cellulose nanofiber driven by modulated axial distribution of crystalline planes, hydrogen bonding, and hydrophobic interactions as suggested by all-atom molecular dynamic simulations. Such shish kebab nanostructures enable the ultrathin membrane to possess open, transparent, mechanically robust interlocked networks with high mechanical performance with up to 30 GPa in stiffness and 260 MPa in strength. These nanoporous robust membranes allow for the extremely high water flux, up to 3.5 × 10<sup>4</sup> L h<sup>–1</sup> m<sup>–2</sup> bar<sup>–1</sup> combined with high rejection rate for various organic molecules, capability of capturing heavy metal ions and their further reduction into metal nanoparticles for added SERS detection capability and catalytic functionalities

    En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes

    No full text
    Surface modification with polymer grafting is a versatile tool for tuning the surface properties of a wide variety of materials. From a practical point of view, such a process should be readily scalable and transferable between different substrates and consist of as least number of steps as possible. To this end, a cross-linkable amphiphilic copolymer system that is able to bind covalently to surfaces and form permanently attached networks via a one-step procedure is reported here. This system consists of brushlike copolymers (molecular brushes) made of glycidyl methacrylate, poly­(oligo­(ethylene glycol) methyl ether methacrylate), and lauryl methacrylate, which provide the final product with tunable reactivity and balance between hydrophilicity and hydrophobicity. The detailed study of the copolymer synthesis and properties has been carried out to establish the most efficient pathway to design and tailor this amphiphilic molecular brush system for specific applications. As an example of the applications, we showed the ability to control the deposition of graphene oxide (GO) sheets on both hydrophilic and hydrophobic surfaces using GO modified with the molecular brushes. Also, the capability to tune the osteoblast cell adhesion with the copolymer-based coatings was demonstrated

    Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets

    No full text
    Despite noteworthy progress in the fabrication of large-area graphene sheetlike nanomaterials, the vapor-based processing still requires sophisticated equipment and a multistage handling of the material. An alternative approach to manufacturing functional graphene-based films includes the employment of graphene oxide (GO) micrometer-scale sheets as precursors. However, search for a scalable manufacturing technique for the production of high-quality GO nanoscale films with high uniformity and high electrical conductivity is still continuing. Here we show that conventional dip-coating technique can offer fabrication of high quality mono- and bilayered films made of GO sheets. The method is based on our recent discovery that encapsulating individual GO sheets in a nanometer thick molecular brush copolymer layer allows for the nearly perfect formation of the GO layers via dip coating from water. By thermal reduction the bilayers (cemented by a carbon-forming polymer linker) are converted into highly conductive and transparent reduced GO films with a high conductivity up to 10<sup>4</sup> S/cm and optical transparency on the level of 90%. The value is the highest electrical conductivity reported for thermally reduced nanoscale GO films and is close to the conductivity of indium tin oxide currently in use for transparent electronic devices, thus making these layers intriguing candidates for replacement of ITO films
    corecore