41 research outputs found

    Identification of Hysteresis in Human Meridian Systems Based on NARMAX Model

    Get PDF
    It has been found that the response of acupuncture point on the human meridian line exhibits nonlinear dynamic behavior when excitation of electroacupuncture is implemented on another meridian point. This nonlinear phenomenon is in fact a hysteretic phenomenon. In order to explore the characteristic of human meridian and finally find a way to improve the treatment of diseases via electro-acupuncture method, it is necessary to identify the model to describe the corresponding dynamic hysteretic phenomenon of human meridian systems stimulated by electric-acupuncture. In this paper, an identification method using nonlinear autoregressive and moving average model with exogenous input (NARMAX) is proposed to model the dynamic hysteresis in human meridian. As the hysteresis is a nonlinear system with multivalued mapping, the traditional NARMAX model is unavailable to it directly. Thus, an expanded input space is constructed to transform the multi-valued mapping of the hysteresis to a one-to-one mapping. Then, the identification method using NARMAX model on the constructed expanded input space is developed. Finally, the proposed method is applied to hysteresis modeling for human meridian systems

    Competition of zinc ion for the [2Fe-2S] cluster binding site in the diabetes drug target protein mitoNEET

    Get PDF
    Human mitochondrial protein mitoNEET is a novel target of type II diabetes drug pioglitazone, and contains a redox active [2Fe-2S] cluster that is hosted by a unique ligand arrangement of three cysteine and one histidine residues. Here we report that zinc ion can compete for the [2Fe-2S] cluster binding site in human mitoNEET and potentially modulate the physiological function of mitoNEET. When recombinant mitoNEET is expressed in Escherichia coli cells grown in M9 minimal media, purified mitoNEET contains very little or no iron-sulfur clusters. Addition of exogenous iron or zinc ion in the media produces mitoNEET bound with a [2Fe-2S] cluster or zinc, respectively. Mutations of the amino acid residues that hosting the [2Fe-2S] cluster in mitoNEET diminish the zinc binding activity, indicating that zinc ion and the [2Fe-2S] cluster may share the same binding site in mitoNEET. Finally, excess zinc ion effectively inhibits the [2Fe-2S] cluster assembly in mitoNEET in E. coli cells, suggesting that zinc ion may impede the function of mitoNEET by blocking the [2Fe-2S] cluster assembly in the protein. Copyright © Springer Science+Business Media, LLC. 2012

    Continuous flow intensification of ortho-lithiation at ambient conditions

    Get PDF
    Ortho-lithiation is an important class of reaction for the synthesis of regiospecifically substituted aromatics and it is an emerging method to prepare phthalides which are common pharmaceutically active compounds.1 This reaction is typically conducted in batch mode under cryogenic temperatures (-78 to -40 ℃)2 to tame the high reactivity of the organolithium intermediates. Scaling up batch cryogenic organolithiation chemistry has traditionally proven to be a significant challenge. This involves the need to handle large quantities of hazardous lithium reagents and excessive costs associated with cryogenic technology at scale. These challenges make ortho-lithiation reaction an ideal candidate in deploying continuous flow processing as a process intensification (PI) technique. Continuous flow processing offers several ‘green’ benefits in the case of ortho-lithiation reaction where the use of highly energy-intensive refrigeration to -78 ℃ may be avoided. This offers the prospect of considerable energy savings at industrial scale, leading to reduced greenhouse gas emissions. It can also achieve high purity product stream so the downstream processing steps may be simplified. This minimizes the amount of solvent used and increases productivity due to higher selectivity. In addition, the use of continuous flow processing lowers the risk of accidental releases arising from the lower inventories of hazardous material. Please click Additional Files below to see the full abstract

    Characteristics of Globus Pallidus Internus Local Field Potentials in Hyperkinetic Disease

    Get PDF
    Background: Dystonia and Huntington's disease (HD) are both hyperkinetic movement disorders but exhibit distinct clinical characteristics. Aberrant output from the globus pallidus internus (GPi) is involved in the pathophysiology of both HD and dystonia, and deep brain stimulation (DBS) of the GPi shows good clinical efficacy in both disorders. The electrode externalized period provides an opportunity to record local field potentials (LFPs) from the GPi to examine if activity patterns differ between hyperkinetic disorders and are associated with specific clinical characteristics.Methods: LFPs were recorded from 7 chorea-dominant HD and nine cervical dystonia patients. Differences in oscillatory activities were compared by power spectrum and Lempel-Ziv complexity (LZC). The discrepancy band power ratio was used to control for the influence of absolute power differences between groups. We further identified discrepant frequency bands and frequency band ratios for each subject and examined the correlations with clinical scores.Results: Dystonia patients exhibited greater low frequency power (6–14 Hz) while HD patients demonstrated greater high-beta and low-gamma power (26–43 Hz) (p < 0.0298, corrected). United Huntington Disease Rating Scale chorea sub-score was positively correlated with 26–43 Hz frequency band power and negatively correlated with the 6–14 Hz/26–43 Hz band power ratio.Conclusion: Dystonia and HD are characterized by distinct oscillatory activity patterns, which may relate to distinct clinical characteristics. Specifically, chorea may be related to elevated high-beta and low-gamma band power, while dystonia may be related to elevated low frequency band power. These LFPs may be useful biomarkers for adaptive DBS to treat hyperkinetic diseases

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Nonsmooth optimization control based on a sandwich model with hysteresis for piezo-positioning systems

    No full text
    A nonsmooth optimization control (NOC) based on a sandwich model with hysteresis is proposed to control a micropositioning system (MPS) with a piezoelectric actuator (PEA). In this control scheme, the hysteresis phenomenon inherent in the PEA is described by a Duhem submodel embedded between two linear dynamic submodels that describe the behavior of the drive amplifier and the flexible hinge with load, respectively, thus constituting a sandwich model with hysteresis. Based on this model, a nonsmooth predictor for sandwich systems with hysteresis is constructed. To avoid the complicated online search for the optimal value of the generalized gradient at a nonsmooth point, the method of the so-called weighted estimation of generalized gradient is proposed. In order to compensate for the model error caused by model uncertainty, a model error compensator (MEC) is integrated into the online optimization control strategy. Afterwards, the stability of the control system is analyzed based on Lyapunov’s theory. Finally, the proposed NOC-MEC method is verified on an MPS with a PEA, and the corresponding experimental results are presented
    corecore