16 research outputs found

    Machine Learning Approaches for Metalloproteins

    Get PDF
    Metalloproteins are a family of proteins characterized by metal ion binding, whereby the presence of these ions confers key catalytic and ligand-binding properties. Due to their ubiquity among biological systems, researchers have made immense efforts to predict the structural and functional roles of metalloproteins. Ultimately, having a comprehensive understanding of metalloproteins will lead to tangible applications, such as designing potent inhibitors in drug discovery. Recently, there has been an acceleration in the number of studies applying machine learning to predict metalloprotein properties, primarily driven by the advent of more sophisticated machine learning algorithms. This review covers how machine learning tools have consolidated and expanded our comprehension of various aspects of metalloproteins (structure, function, stability, ligand-binding interactions, and inhibitors). Future avenues of exploration are also discussed

    Fighting Cancer with Corroles

    Get PDF
    Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999–2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities

    A cytotoxic and cytostatic gold(III) corrole

    Get PDF
    We have synthesized and characterized a water-soluble gold(III) corrole (1-Au) that is highly toxic to cisplatin-resistant cancer cells. Relative to its 1-Ga analogue, axial ligands bind only weakly to 1-Au, which likely accounts for its lower affinity for human serum albumin (HSA). We suggest that the cytotoxicity of 1-Au may be related to this lower HSA affinity

    Multiple Items, Ascending Price Auctions: An Experimental Examination of Alternative Auction Sequences

    Get PDF
    The paper investigates the revenue and efficiency of different ascending price auction architectures for the sale of three items and five bidders. Four architectures are studied: two different sequences of single item auctions, simultaneous auctions with a common countdown clock, and simultaneous auctions with item specific countdown clocks. A countdown clock measures the time until the auction closes but resets with each new bid. The environment contains independent private values, no uncertainty about own preferences, no information about other’s preferences, and a one unit budget constraint. The Nash equilibrium best response with straight forward bidding fits both dynamic and outcome data well. When non-unique Nash equilibria exist as in the case of simultaneous markets with a common clock, the social value maximizing Nash equilibrium emerges as the equilibrium selection. Both total revenue and efficiencies depend on the architecture as predicted by the Nash model, with the exception of the independent clocks architecture, which performs poorly on all dimensions

    Computational predictions of corroles as a class of Hsp90 inhibitors

    Get PDF
    Corroles have been shown experimentally to cause cell cycle arrest, and there is some evidence that this might be attributed to an inhibitory effect of corroles on Heat shock protein 90 (Hsp90), which is known to play a vital role in cancer cell proliferation. In this study, we used molecular dynamics to examine the interaction of gallium corroles with Hsp90, and found that they can bind preferentially to the ATP-binding N-terminal site. We also found that structural variations of the corrole ring can influence the binding energies and affinities of the corrole to Hsp90. We predict that both the biscarboxylated corrole (4-Ga) and a proposed 3,17-bis-sulfonated corrole (7-Ga) are promising alternatives to Ga(III) 5,10,15-tris(pentafluorophenyl)-2,17-bis(sulfonic acid)-corrole (1-Ga) as anti-cancer agents

    Lanthanides: Applications in Cancer Diagnosis and Therapy

    Get PDF
    Lanthanide complexes are of increasing importance in cancer diagnosis and therapy, owing to the versatile chemical and magnetic properties of the lanthanide-ion 4f electronic configuration. Following the first implementation of gadolinium(III)-based contrast agents in magnetic resonance imaging in the 1980s, lanthanide-based small molecules and nanomaterials have been investigated as cytotoxic agents and inhibitors, in photodynamic therapy, radiation therapy, drug/gene delivery, biosensing, and bioimaging. As the potential utility of lanthanides in these areas continues to increase, this timely review of current applications will be useful to medicinal chemists and other investigators interested in the latest developments and trends in this emerging field

    Fighting Cancer with Corroles

    Get PDF
    Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999–2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities

    Cell-Penetrating Protein/Corrole Nanoparticles

    Get PDF
    Recent work has highlighted the potential of metallocorroles as versatile platforms for the development of drugs and imaging agents, since the bioavailability, physicochemical properties and therapeutic activity can be dramatically altered by metal ion substitution and/or functional group replacement. Significant advances in cancer treatment and imaging have been reported based on work with a water-soluble bis-sulfonated gallium corrole in both cellular and rodent-based models. We now show that cytotoxicities increase in the order Ga < Fe < Al < Mn < Sb < Au for bis-sulfonated corroles; and, importantly, that they correlate with metallocorrole affinities for very low density lipoprotein (VLDL), the main carrier of lipophilic drugs. As chemotherapeutic potential is predicted to be enhanced by increased lipophilicity, we have developed a novel method for the preparation of cell-penetrating lipophilic metallocorrole/serum-protein nanoparticles (NPs). Cryo-TEM revealed an average core metallocorrole particle size of 32 nm, with protein tendrils extending from the core (conjugate size is ~100 nm). Optical imaging of DU-145 prostate cancer cells treated with corrole NPs (≤100 nM) revealed fast cellular uptake, very slow release, and distribution into the endoplasmic reticulum (ER) and lysosomes. The physical properties of corrole NPs prepared in combination with transferrin and albumin were alike, but the former were internalized to a greater extent by the transferrin-receptor-rich DU-145 cells. Our method of preparation of corrole/protein NPs may be generalizable to many bioactive hydrophobic molecules to enhance their bioavailability and target affinity

    Cell-Penetrating Protein/Corrole Nanoparticles

    Get PDF
    Recent work has highlighted the potential of metallocorroles as versatile platforms for the development of drugs and imaging agents, since the bioavailability, physicochemical properties and therapeutic activity can be dramatically altered by metal ion substitution and/or functional group replacement. Significant advances in cancer treatment and imaging have been reported based on work with a water-soluble bis-sulfonated gallium corrole in both cellular and rodent-based models. We now show that cytotoxicities increase in the order Ga < Fe < Al < Mn < Sb < Au for bis-sulfonated corroles; and, importantly, that they correlate with metallocorrole affinities for very low density lipoprotein (VLDL), the main carrier of lipophilic drugs. As chemotherapeutic potential is predicted to be enhanced by increased lipophilicity, we have developed a novel method for the preparation of cell-penetrating lipophilic metallocorrole/serum-protein nanoparticles (NPs). Cryo-TEM revealed an average core metallocorrole particle size of 32 nm, with protein tendrils extending from the core (conjugate size is ~100 nm). Optical imaging of DU-145 prostate cancer cells treated with corrole NPs (≤100 nM) revealed fast cellular uptake, very slow release, and distribution into the endoplasmic reticulum (ER) and lysosomes. The physical properties of corrole NPs prepared in combination with transferrin and albumin were alike, but the former were internalized to a greater extent by the transferrin-receptor-rich DU-145 cells. Our method of preparation of corrole/protein NPs may be generalizable to many bioactive hydrophobic molecules to enhance their bioavailability and target affinity
    corecore