3,936 research outputs found

    Semileptonic decays of BcB_c meson to S-wave charmonium states in the perturbative QCD approach

    Get PDF
    Inspired by the recent measurement of the ratio of BcB_c branching fractions to J/ψπ+J/\psi \pi^+ and J/ψμ+νμJ/\psi \mu^+\nu_{\mu} final states at the LHCb detector, we study the semileptonic decays of BcB_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions BcP,VB_c\rightarrow P,V, where PP and VV denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for BcB_c meson. It is found that the predicted branching ratios range from 10610^{-6} up to 10210^{-2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions BR(Bc+J/Ψπ+)BR(Bc+J/Ψμ+νμ)\frac{\mathcal {BR}(B_c^+\rightarrow J/\Psi \pi^+)}{\mathcal {BR}(B_c^+\rightarrow J/\Psi \mu^+\nu_{\mu})} is in good agreement with the data. For BcVlνlB_c\rightarrow V l \nu_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments.Comment: 12 pages, 3 figures, 5 table

    Direct CP violation in τ±K±ρ0(ω)ντK±π+πντ\tau^\pm\rightarrow K^\pm \rho^0 (\omega)\nu_\tau \rightarrow K^\pm \pi^+\pi^-\nu_\tau

    Get PDF
    We study the direct CP violation in the τ±K±ρ0(ω)ντK±π+πντ\tau^\pm\rightarrow K^\pm \rho^0 (\omega)\nu_\tau \rightarrow K^\pm \pi^+\pi^-\nu_\tau decay process in the Standard Model. An interesting mechanism involving the charge symmetry violating mixing between ρ0\rho^0 and ω\omega is applied to enlarge the CP asymmetry. With this mechanism, the maximum differential and localized integrated CP asymmetries can reach (5.61.7+2.9)×1012-(5.6^{+2.9}_{-1.7})\times10^{-12} and 6.33.3+2.4×10116.3^{+2.4}_{-3.3}\times 10^{-11}, respectively, which still leave plenty room for CP-violating New Physics to be discovered through this process

    Improving thermoelectric properties of p-type Bi2Te3-based alloys by spark plasma sintering

    Get PDF
    AbstractHigh-performance (Bi2Te3)x(Sb2Te3)1−x bulk materials were prepared by combining fusion technique with spark plasma sintering, and their thermoelectric properties were investigated. The electrical resistivity and Seebeck coefficient increase greatly and the thermal conductivity decreases significantly with the increase of Bi2Te3 content, which leads to a great improvement in the thermoelectric figure of merit ZT. The maximum ZT value reaches 1.33 at 398 K for the composition of 20%Bi2Te3-80%Sb2Te3 with 3% (mass fraction) excess Te

    Physical and Mechanical Properties of Herrnholz Granite: An Ideal Experimental Material

    Get PDF
    Granite, as the most common plutonic rock of the Earth’s crust and the most widely used paving block and building stone in industrial activities, has been widely employed in experimental investigations on its chemical composition, physical properties, and mechanical responses. This chapter focuses on the physical and mechanical properties of Herrnholz granite while emphasizing that it is an ideal experimental material for its homogeneity and fine-grained nature. Among the properties discussed here are density, porosity, pore size distribution, ultrasonic wave velocities, strength, fracture toughness, and hydroscopic/hygroscopic properties. Preliminary laboratory data sets to reveal relationships between the hygroscopic properties and mesoporous character of the Herrnholz granite as a result of water adsorption on internal fabric elements, such as pores, and microcracks
    corecore