2,565 research outputs found

    Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Get PDF
    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods

    Accurate and Efficient Event-based Semantic Segmentation Using Adaptive Spiking Encoder-Decoder Network

    Full text link
    Leveraging the low-power, event-driven computation and the inherent temporal dynamics, spiking neural networks (SNNs) are potentially ideal solutions for processing dynamic and asynchronous signals from event-based sensors. However, due to the challenges in training and the restrictions in architectural design, there are limited examples of competitive SNNs in the realm of event-based dense prediction when compared to artificial neural networks (ANNs). In this paper, we present an efficient spiking encoder-decoder network designed for large-scale event-based semantic segmentation tasks. This is achieved by optimizing the encoder using a hierarchical search method. To enhance learning from dynamic event streams, we harness the inherent adaptive threshold of spiking neurons to modulate network activation. Moreover, we introduce a dual-path Spiking Spatially-Adaptive Modulation (SSAM) block, specifically designed to enhance the representation of sparse events, thereby considerably improving network performance. Our proposed network achieves a 72.57% mean intersection over union (MIoU) on the DDD17 dataset and a 57.22% MIoU on the recently introduced, larger DSEC-Semantic dataset. This performance surpasses the current state-of-the-art ANNs by 4%, whilst consuming significantly less computational resources. To the best of our knowledge, this is the first study demonstrating SNNs outperforming ANNs in demanding event-based semantic segmentation tasks, thereby establishing the vast potential of SNNs in the field of event-based vision. Our source code will be made publicly accessible

    Multi-wavelength coherent random laser in bio-microfibers

    Get PDF
    In this paper, pure silk protein was extracted from Bombyx mori silks and fabricated into a new kind of disordered bio-microfiber structure using electrospinning technology. Coherent random lasing emission with low threshold was achieved in the silk fibroin fibers. The random lasing emission wavelength can be tuned in the range of 33 nm by controlling the pump location with different scattering strengths. Therefore, the bio-microfiber random lasers can be a wide spectral light source when the system is doped with a gain or energy transfer medium with a large fluorescence emission band. Application of the random lasers of the bio-microfibers as a low-coherence light source in speckle-free imaging had also been studied

    Information scrambling and entanglement in quantum approximate optimization algorithm circuits

    Full text link
    Variational quantum algorithms, which consist of optimal parameterized quantum circuits, are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era. Apart from classical computational resources, different kinds of quantum resources have their contributions in the process of computing, such as information scrambling and entanglement. Characterizing the relation between complexity of specific problems and quantum resources consumed by solving these problems is helpful for us to understand the structure of VQAs in the context of quantum information processing. In this work, we focus on the quantum approximate optimization algorithm (QAOA), which aims to solve combinatorial optimization problems. We study information scrambling and entanglement in QAOA circuits respectively, and discover that for a harder problem, more quantum resource is required for the QAOA circuit to obtain the solution. We note that in the future, our results can be used to benchmark complexity of quantum many-body problems by information scrambling or entanglement accumulation in the computing process.Comment: 11 pages, 9 figures, Some minor correction

    MAE-GEBD:Winning the CVPR'2023 LOVEU-GEBD Challenge

    Full text link
    The Generic Event Boundary Detection (GEBD) task aims to build a model for segmenting videos into segments by detecting general event boundaries applicable to various classes. In this paper, based on last year's MAE-GEBD method, we have improved our model performance on the GEBD task by adjusting the data processing strategy and loss function. Based on last year's approach, we extended the application of pseudo-label to a larger dataset and made many experimental attempts. In addition, we applied focal loss to concentrate more on difficult samples and improved our model performance. Finally, we improved the segmentation alignment strategy used last year, and dynamically adjusted the segmentation alignment method according to the boundary density and duration of the video, so that our model can be more flexible and fully applicable in different situations. With our method, we achieve an F1 score of 86.03% on the Kinetics-GEBD test set, which is a 0.09% improvement in the F1 score compared to our 2022 Kinetics-GEBD method.Comment: Winner of CVPR2023 LOVEU GEBD Challeng

    Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning

    Get PDF
    summary:This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy
    corecore