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Abstract

Hybrid solar-battery power source is essential in the nexus of plug-in electric

vehicle (PEV), renewables, and smart building. This paper devises an opti-

mization framework for efficient energy management and components sizing of

a single smart home with home battery, PEV, and potovoltatic (PV) arrays.

We seek to maximize the home economy, while satisfying home power demand

and PEV driving. Based on the structure and system models of the smart

home nanogrid, a convex programming (CP) problem is formulated to rapidly

and efficiently optimize both the control decision and parameters of the home

battery energy storage system (BESS). Considering different time horizons of

optimization, home BESS prices, types and control modes of PEVs, the param-

eters of home BESS and electric cost are systematically investigated. Based on

the developed CP control law in home to vehicle (H2V) mode and vehicle to

home (V2H) mode, the home with BESS does not buy electric energy from the

grid during the electric price’s peak periods.
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1. Introduction1

1.1. Motivation2

The present energy demand and environmental crisis has been promoting3

the rapid development of electric vehicles (EVs) and renewables [1, 2]. How-4

ever, EVs charging activities and some renewable energy generation, such as so-5

lar and wind power, are always intermittent and volatile. Reconciling EVs and6

renewables to ensure optimal usage of electric power is critical for the perfor-7

mance and economy of smart grid [3, 4], especially when larger-scale distributed8

generation (DG) units and EVs are deployed [5]. As a consequence, researchers9

have recently focused on developing effective management and sizing techniques10

for integrating EVs and renewables into house loads and the grid. New ma-11

terial and structure of renewables devices were also reported. For example,a12

newly designed microfluidic architecture with a hyperflexible siliconic matrix is13

proposed in [6], as a polymeric cage in dye-sensitized solar cell (DSSC). A pho-14

tocurable polymeric membrane is employed as quasi-solid electrolyte for both15

the electrochromic device and the DSSC in [7]. Moreover, a flexible integrated16

energy harvesting and storage system is devised in [8] by coupling DSSC and17

an electrical double layer supercapacitor.18

Related to the recent attention given to smart grid vision, smart home19

nanogrids that can optimize energy consumption and lower electricity bills20

have also gained particular importance. The results in [9] have comprehen-21

sively demonstrated the second-life battery energy storage’s performance in solar22

charging, home load following, and utility demand side management for a single23

family home. Developing a smart home energy management system (SHEMS)24

and component sizing method has become a common global priority to support25

the trend toward a more sustainable energy supply for smart grid. One of the26
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key features of smart home nanogrid is the SHEMS that intelligently controls27

household loads through an association between smart meters, smart appliances,28

EVs, and home power generation and storage, etc. Besides, power source dimen-29

sion is another important factor. Hence, this paper focuses on optimal energy30

management and sizing of a smart home nanogrid with home battery energy31

storage system (BESS), plug-in electric vehicle (PEV), and potovoltatic (PV)32

power supply.33

1.2. Literature review34

There is a rich literature for optimized home energy management (HEM)35

approaches, which can be generally categorized into mixed-integer linear pro-36

gramming (MILP) [10], geometric program [11], model predictive control (MPC)37

[12], dynamic programming (DP) [13], stochastic dynamic programming (SDP)38

[14]. The optimal operation of a smart household with a PV, a home battery39

bank, and an EV with vehicle to home (V2H) option is considered through solv-40

ing a MILP in [15]. A MILP model of the HEM structure is established in [16]41

to investigate a joint evaluation of a dynamic pricing and peak power limiting42

based demand response (DR) strategy , with a bi-directional utilization of EV43

and energy storage system. An optimal day-ahead household appliances schedul-44

ing is developed in [17] under hourly pricing and peak power-limiting based DR45

strategies, where thermostatically and non-thermostatically controllable loads46

are explicitly modeled using MILP. In addition, the optimal operation of a47

smart neighborhood, in terms of minimizing the total energy procurement cost,48

is analyzed using MILP by considering all possible bi-directional power flows in49

[18]. A MILP model of home energy management system (HEMS), as well as50

a wavelet transform (WT)-artificial neural network (ANN) forecasting of resi-51

dential loads, is described in [19] for different price signals. A MILP-based DR52

strategy with end-user comfort violation minimization is synthesized for residen-53

tial heating, ventilation, and air conditioning (HVAC) units in [20]. Considering54

DR, sizing of PV and energy storage system applied in smart households is as-55

sessed with HEM modeling in a MILP framework in [21]. It is clear that MILP56
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has been widely adopted for either creating efficient operational schedules for57

HEM or sizing of component. However, few studies exploring HEM MILP mod-58

els considered optimal component size and control strategy simultaneously. A59

new effective tool, convex programming (CP), which can rapidly and efficiently60

optimize both management strategy and parameters, has also been applied by61

some researchers in the energy management field.62

Due to the significant advantage of CP in computational efficiency, CP is63

gaining growing popularity in energy management of energy systems. The prob-64

lem of integrating residential PV power generation and storage systems into the65

smart grid is addressed in [22] for simultaneous peak power shaving and total66

electricity cost minimization over a billing period, where a convex optimization67

problem is formulated and solved. A renewable energy buying-back scheme68

with dynamic pricing to achieve the goal of energy efficiency for smart grids is69

modeled as a convex problem in [23], which can significantly reduce peak time70

loading and efficiently balance system energy distribution. Based on convex71

objectives and constraints of a grid-tied PV storage system, an optimization72

problem to obtain a control schedule for storage units is solved by CVX in [24].73

Based on the objective of reduction of the substation transformer losses, cost74

saving of energy delivered from the grid, and reduction of the impact on the75

life-cycle cost of the BESS, a convex optimization approach to schedule charg-76

ing and discharging of the lithium-ion-based BESS in a distribution feeder with77

penetration of renewables is discussed in [25]. To assess optimal residential DR78

in a distribution network, a CP problem is formulated to minimize electricity79

payment and waiting time under real-time pricing for a multiagent system in80

[26]. A novel convex quadratic objective function for active power management81

of plug-in hybrid electric vehicles (PHEVs) is proposed in [27] for minimizing82

energy loss of microgrid, where the convexity of the proposed method leads to83

a fast, precise solution facilitating real-time dispatch. Given the price informa-84

tion, a versatile CP framework for the load management of various household85

appliances, in order to support DR through energy management system (EMS)86

in a single smart home, is constructed in [28]. To perform effective storage87

4



control based on the predictions of PV power generation and load power con-88

sumption, [29] splits a residential storage control algorithm into two tiers: the89

global control tier and the local control tier. The global tier, which is performed90

to globally plan future discharging/charging schemes of the storage system, is91

formulated and solved by convex optimization at each decision epoch. It is also92

mentioned in [29] that finding the optimal sizes of the PV module and storage93

module with a given budget is possible, but not elaborated.94

A number of efforts has probed energy management of smart grid with renew-95

ables. Few studies, however, consider optimal component size and control strat-96

egy simultaneously. CP has been successfully applied to simultaneously optimize97

the component size and energy controller for hybrid vehicles [30, 31, 32, 33]. In98

[31], for example, the optimal sizes of the battery pack and fuel cell system, as99

well as power management strategy, are optimally determined by CP. In this100

paper, CP is, for the first time, extended to rapidly and efficiently optimize both101

HEM strategy and sizes of home BESS of a single smart home with both PEV102

and PV arrays.103

1.3. Contributions104

To overcome the downsides of the previous studies, this paper delivers three105

key contributions to the literature. First, CP is leveraged to rapidly and effi-106

ciently optimize both the control decision and parameters of the home BESS107

in the smart home with PEV and PV arrays. To the best knowledge of the108

authors, this is the first study on the CP-driven joint optimization of control109

strategy and component size of the home BESS with the participation of PEV110

and PV arrays. Second, based on different time horizons of optimization, home111

BESS prices, types and control modes of PEV, we attain the optimal parame-112

ters of the home BESS and electric cost. In contrast to the total electric cost113

of a home without home BESS, the usefulness of home battery energy storage114

to increse the home economy is systematically evaluated. Finally, using the CP115

control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode116

demonstrates that the home with BESS does not buy electric energy from the117
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grid during the peak periods of electric tariff.118

1.4. Outline of paper119

The remainder of the paper proceeds as follows. Section 2 details the system120

structure and models of the smart home nanogrid. The CP problem is formalized121

in Section 3. The optimization results are discussed in Section 4, followed by122

conclusions summarized in Section 5.123

2. Structure and models124

2.1. Smart home nanogrid structure125

We consider a single smart home as shown in Fig. 1 [34], including a PEV126

battery, solar panels, a home BESS, home equipments, the utility grid, and a127

SHEMS. The SHEMS communicates with home battery management system128

(BMS), home appliances, the PEV BMS, and solar panels. The PEV battery is129

designed to allow both bidirectional and unidirectional power flow. The home130

battery is designed to allow bidirectional power flow. The SHEMS is also utilized131

to manage the power flow among the PEV battery, home appliances, PV arrays,132

the home battery, and the utility grid.133

2.2. System model134

The power balance equation of the smart home nanogrid is

Pgrid,k = Pdem,k + Pb,k + Pevc,kSk − Ppv,k, k = 0, ..., N − 1, (1)

0 ≤ Pgrid,k ≤ Pmax
grid (2)

Sk =

0 for td ≤ k ≤ ta

1 otherwise,

(3)

where we assume Pgrid,k ≥ 0, which means that the house is not permitted to135

supply power to the grid [12]. Variable Sk denotes the PEV state at time k, i.e.,136
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Figure 1: Structure of smart home nanogrid with a PEV and PV arrays [34].

plugged-in (Sk = 1) or plugged-out (Sk = 0) [34, 35]. In this work, we assume137

that the PEV plugs-out and plugs-in once a day.138

The controller also must maintain PEV battery energy and power within

simple bounds [36]. The dynamics and constraints of the PEV battery are

given by

Eev,k+1 = Eev,k + ∆t(Pevc,k − ηevc|Pevc,k|), k = 0, ..., N − 1, (4)

Eev,0 = Eev,init, (5)

Eplug−out
ev = SOCmax

ev Qev,eap, (6)

Eplug−in
ev = SOCmax

ev Qev,eap − Edr, (7)

Edr = 0.4Qevc,eap, k = 0, ..., N, (8)

Qevc,eapSOC
min
ev ≤ Eev,k ≤ Qevc,eapSOC

max
ev , k = 0, ..., N, (9)

Pmin
evc ≤ Pevc,k ≤ Pmax

evc , k = 0, ..., N − 1, (10)

where we assume Edr is 0.4Qevc,eap [37], and the charge power of the PEV139

battery is positive, by convention.140

Likewise, the controller also must maintain home battery energy and power
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within allowable bounds, and its dynamics are depicted by

Eb,k+1 = Eb,k + ∆t(Pb,k − ηb|Pb,k|), k = 0, ..., N − 1, (11)

Eb,0 = Eb,init, (12)

Qb,eapSOC
min
b ≤ Eb,k ≤ Qb,eapSOC

max
b , k = 0, ..., N, (13)

−Pmax
b ≤ Pb,k ≤ Pmax

b , k = 0, ..., N − 1, (14)

where the charge power is assumed to be positive, by convention.141

3. Optimization problem formulation142

This section presents the CP approach used for solving the optimal param-143

eters design and power management problem for the smart home nanogrid. A144

standard CP problem is formulated as145

minimize F (x)

s. t. fi(x) ≤ 0, i = 1, ..., p,

hj(x) = 0, j = 1, ..., q,

x ∈ Z (15)

where Z ∈ Rn is a convex set, F (x) and fi(x) are convex functions, and hj(x)

are affine functions of optimization vector x. The theoretical and algorithmic

aspects of CP are detailed in [38]. The convex objective function F (x), which is

of great interest to the home owner, is formulated to minimize a summation of

the total electric energy cost in the time horizon of optimization and the home

BESS cost, for which we mainly consider the battery cost and charger cost:

F = Cny + cbQb,eap + ccP
max
b , (16)

where for simplicity, we assume that the total electric energy cost is the same

in every year. As a result, we can deduce Cny as follows:

Cny = n

N−1∑
k=0

ce,kPgrid,k/100, (17)
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It is easy to see that the objective function F is linear, which is convex. The

optimization variables include the state variables Eev,k and Eb,k, the control

variables Pevc,k and Pb,k, and the optimal design parameters Qb,eap and Pmax
b .

The constraints are the home power balance (1), the PEV battery constraints

(4)-(10), the home battery constraints (11)-(14), and the grid limits (2). The

inequality constraint functions include Eqns (2), (9), (10), (13), and (14), which

are linear and thus convex. The equality constraint functions include Eqns (1),

(4)-(8), (11), and (12). Obviously, Eqns (1), (5)-(8), and (12) are linear and

affine. However, Eqns (4) and (11) are absolute function, which are not affine.

In a standard convex optimization problem, only affine equality constraints

are tolerated. The total original problem is not a convex problem, due to the

absolute equality constraints, which is essentially nonlinear. However, relaxing

(4) and (11) to inequalities gives a convex problem without qualitatively altering

the original problem as follows:

Eev,k+1 ≤ Eev,k + ∆t(Pevc,k − ηevc|Pevc,k|), k = 0, ..., N − 1. (18)

Eb,k+1 ≤ Eb,k + ∆t(Pb,k − ηb|Pb,k|), k = 0, ..., N − 1. (19)

Now, Eqn (18) and (19) are absolute inequalities, which are convex, enabling146

the problem to become a convex problem. A tool, CVX [38], is employed to147

parse the optimization problem, inducing a semi-definite program that can be148

efficiently solved by SeDuMi (Self-Dual-Minimization) [39]. It should be under-149

lined that thanks to the convexity, a globally optimal solution with arbitrary150

initialization can be readily accomplished.151

4. Results & discussion152

4.1. System parameters153

This section analyses the properties of the proposed CP approach. The key154

parameters of the smart home are listed in Table 2. All the simulations were155

run on a PC with a 2.50 GHz Intel Core i5-2450M CPU and 4 GB of internal156

memory. Thanks to the mentioned advantages of the proposed method, the CP157
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computational time is less than 30 s using CVX tool in the Matlab environment158

when optimizing component size and control strategy simultaneously. And the159

CP computational time is less than 1 s when only optimizing the HEM control160

strategy with a 24h look-ahead horizon.161

The hourly home load data and PV power supply data on each day and162

average from a single family home in California, US [40] are shown in Fig. 2-(a)163

and (b). The collected data corresponds to date range from 2014-01-01 to 2014-164

12-31. The hourly home load demand varies from 0.25 kW to 4.58 kW. The165

peak loads always happen from 7:00-15:00 and 18:00-1:00. The hourly PV power166

supply varies from 0 to 2.81 kW. It is easily observed that the PV power supply is167

centralized from 9:00 to 15:00 and sometimes more than the instantaneous home168

load demand. Referring to Pacific Gas and Electric Company’s (PG&E) special169

EV rate plans for residential customers, they are non-tiered, time-of-use plans170

as shown in Fig. 2-(c) [41]. The electric price is lowest (10 cents/kWh) from171

23:00 to 7:00 when the demand is lowest. Electricity is more expensive during172

Peak (43 cents/kWh, 14:00-21:00) and Partial-Peak (22 cents/kWh, 7:00-14:00173

and 21:00 to 23:00) periods. Fig. 2-(d) plots the state of the PEV. The PEV174

plugs-out from 7:00 to 20:00 (not at home) and plugs-in from 20:00 to 7:00 (at175

home). It is obvious that the house sells electric energy to the grid with Partial-176

Peak electric price and buys it with peak electric price. If there is a home BESS,177

users can not only store the redundant PV power, but also buy electric energy178

with low price for the use of high price time. The home BESS can not only179

reduce household electric energy costs, but also supply back-up electric energy180

to the house during lacking of electric power because of blackout.181

4.2. System parameters optimization182

Based on the historical home load demand and PV power generation data,183

as well as the hourly time-varying electric price and state of PEV, the optimal184

parameters of home BESS and energy management strategy can be procured185

via CP. In light of the report of Avicenne Energy, the worldwide battery price186

might vary from 60 $/kWh to 203 $/kWh in 2020 [42]. Considering different187
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Figure 2: Real-world data of home power demand, PV generation, elelctric price, and state

of vehicle.

time horizons of optimization, home BESS prices, different control modes of188

PEV, the parameters of home BESS can be explored, as well as the total cost.189

First, we consider that the owner has a Nissan Leaf with 24 kWh battery that190

cannot discharge power to the home. Independently of the time horizon of191

optimization (1 to 10), battery price (60 $/kWh to 203 $/kWh), and charger192

price (1000 $/kW) [43], the maximum power Pmax
b maintains constant, equals193

to 2.26 kW. The reason for this result may be due to the constraint of Eqn194

(2), not permitting power supply to the grid. The optimal values of battery195

energy capacity Qb,eap are shown in Fig. 3-(a). The battery energy capacity is196

augmented as the optimization time horizon increases. The total electric costs197

with/without home BESS for different time horizons of optimization are also198

shown in Fig. 3-(b).199

Given the battery price and charger price of 100 $/kWh and 1000 $/kW,200

as well as different time horizons, the optimal values of home battery energy201
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Figure 3: Battery energy capacity and total electric cost, given different time horizons and

battery prices.

capacity Qb,eap, and electric cost are shown in Table 3, where Fe, F , FnoB ,202

and Fdiff are the electric cost for one year with home BESS, the total cost203

with BESS in n years, the electric cost without BESS, and the cost difference204

between the cases with and without BESS in n years, respectively. The home205

battery energy capacity increases as the time horizon becomes larger. The total206

cost F of the house with home BESS is larger than that in the case of the house207

without home BESS, when the time horizon is less than 5 years. However,208

when the time horizon is 5 years, the house with home BESS, for instance,209

can save 487 $. The cost savings become more significant with increased time210

horizons. If we assume a home battery life to be 5 years [44], the optimal value211

of home battery energy capacity that we consider is 17 kWh, and the cost of212

home BESS is 3960 $. With home BESS, the electric energy cost in one year is213

1382 $, whereas without the BESS, the counterpart is 2271.3 $. The associated214

reduction reaches up to around 39.2%.215
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4.3. Optimal results based on different types and control modes of PEV216

This subsection presents the resulting CP control law simulated on smart217

home with PEVs manufactured by different companies, including Nissan Leaf,218

Tesla Mode S, BYD E6, Chevrolet Volt, and Toyota Pruis. Here we assume219

that the time horizon of optimization is 6 years, and the home battery price220

and charger price are 100 $/kWh and 1000 $/kW. Two control modes of PEV221

are considered, i.e., H2V and V2H modes. In H2V mode, the PEV battery222

cannot supply power to the house, 0 ≤ Pevc,k ≤ Pmax
evc . In V2H mode, the PEV223

battery can supply power to the house, −Pmax
evc ≤ Pevc,k ≤ Pmax

evc [45].224

Considering different types of PEVs (with different battery energy capacities225

and chargers), the optimal parameters of home BESS Qb,eap and Pb,max, and the226

total cost are shown in Table 4. In H2V mode and V2H mode, independently227

of the types of PEVs, the maximum power Pb,max keeps constant, equal to 2.26228

kW. In H2V mode, the optimal value of home battery energy capacity Qb,eap229

is not affected by the EV battery energy capacity. In V2H mode, the optimal230

values of home battery energy capacity Qb,eap is affected by the EV battery231

energy capacity, but the influence is very small, i.e., 15.8 kWh ≤ Qb,eap ≤ 16.7232

kWh.233

With/without home BESS, the total cost in V2H mode is less than that in234

H2V mode. For the same type PEV with the same control mode, the total cost235

with home BESS is less than that without home BESS.236

4.4. Example of energy management strategy237

This subsection presents the resulting CP control law in a smart home with238

a Nissan Leaf, simulated on two different operating modes, including H2V mode239

and V2H mode. The hourly power allocation over two days is described in Fig.240

4, including the hourly home power demand (Pdem), the PV power generation241

(PPV ), the home battery power (Pb), the PEV battery power (Pevc), and the242

electric power from the grid (Pgrid). In both H2V and V2H modes, it is evident243

that the majority of the home battery charging occurs during the low electricity244

price period: 24:00-7:00 and high PV power supply period: 10:00-15:00. Most of245
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the home battery discharging happens during the high electricity price period:246

14:00-23:00. The majority of the PEV battery charging occurs during the low247

electricity price period: 23:00-7:00. In V2H mode, the PEV discharging power248

to the house appears during the high electricity price period and large home249

power demand: 21:00-23:00. The electric power from the grid is zero during250

the period: 8:00-23:00 in V2H mode. The electric power from the grid is zero251

during the period: 8:00-21:00 in H2V mode. In summary, in both H2V and252

V2H modes, the home does not buy electric energy from the grid during the253

peak periods of electric price.
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Figure 4: CP-optimized power allocation in two-day simulation.

254

In H2V and V2H modes, energy trajectories of both home and PEV batteries255

are illustrated in Fig. 5. The home battery energy in H2V mode is always higher256

than that in the V2H mode. When the PEV plugs-in, the PEV battery energy in257

H2V mode is higher than that in the V2H mode. In the course of PEV plugging-258

out, the PEV battery energy always equal to SOCmax
ev Qev,eap, because of the259

constraints Equ.(6).260
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To demonstrate the potential economic benefits of the smart home nanogrid,261

we analyse the electric energy cost in a comparative fashion. The hourly electric262

energy cost for two days are shown in Fig. 6, including the cost of home power263

demand, the earned money of PV generation, the earned money of home battery,264

the cost of PEV battery charging, and the total electric cost. The two-day265

electric energy cost of home power demand is 13.90 $, and the two-day earned266

money of PV generation is 6.02 $. The two-day earned money of home battery267

is 4.62 $ in H2V mode and 4.22 $ in V2H mode. The two-day cost of PEV268

battery charging is 2.13 $ in H2V mode and 1.59 $ in V2H mode. The two-day269

total electricity cost is 5.39 $ in H2V mode and 5.25 $ in V2H mode. Therefore,270

the total electric cost in V2H mode is 2.6 % lower than that in H2V mode.271

5. Conclusions272

This paper develops a CP framework for optimal energy management and273

component sizing of a hybrid solar-battery power source for smart home nanogrid274
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Figure 6: CP-optimized electric energy cost in two-day simulation.

with PEV load. The CP problem is mathematically formulated to optimize the275

electric power allocation among the PEV battery, home battery, home power276

demand, PV arrays, and utility grid. At the same time, the CP strategy explic-277

itly takes into account the optimization of home BESS’s parameters. Different278

time horizons of optimization, home battery prices, types and control modes of279

PEVs are also considered in extensive simulation campaigns.280

Results substantiate that the developed CP method can efficiently solve281

the optimization problem, and the home BESS, accounting for a suitable time282

horizon of optimization, contributes to significant operational cost savings, in283

contrast to the option without home BESS. Further, it is found that the to-284

tal electric cost in V2H mode (with bidirectional PEV-to-home/home-to-PEV285

power flow) is 2.6 % lower than that in H2V mode (with unidirectional home-286

to-PEV power flow).287

The future work could incorporate more likely uncertainties into the op-288

timization framework, regarding the house power demand, time-varying elec-289
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tricity price, renewable power generation, the plug-in/plug-out state of PEV,290

etc.291
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Table 1: Nomenclature

cb home battery price per kiloWatt-hour [$/kWh]

cc charger price per kiloWatt [$/kW]

ce,k electricity price [cents/kWh]

Cny n-year total electricity cost [$]

Eev,k energy of PEV battery [kWh]

Eev,init initial PEV battery energy [kWh]

Eplug−out
ev energy of PEV battery when the vehicle plugging-out [kWh]

Eplug−in
ev energy of PEV battery when the vehicle plugging-in [kWh]

Edr consumed energy for driving in a whole day [kWh]

Eb,k energy of home battery [kWh]

Eb,init initial home battery energy [kWh]

k time index

N final time step of one year

n time horizon of optimization [year]

Pgrid,k electric power from the grid [kW]

Pdem,k electric load demand of the house [kW]

Pb,k electric power of home battery [kW]

Pevc,k electric power of PEV battery [kW]

Ppv,k power supply of PV arrays [kW]

Pmax
grid maximal power from the grid [kW]

Pmin
evc PEV battery’s minimal power [kW]

Pmax
evc PEV battery’s maximal power [kW]

Pmax
b home battery’s maximal power [kW]

Qevc,eap energy capacity of the PEV battery [kWh]

Qb,eap energy capacity of the home battery [kWh]

Sk PEV state at time k

td plugging-out time

ta plugging-in time

SOCmin
ev PEV battery’s minimal SOC

SOCmax
ev PEV battery’s maximal SOC

SOCmin
b home battery’s minimal SOC

SOCmax
b home battery’s maximal SOC

∆t time-step [h]

ηevc lost efficiency of PEV battery

ηb lost efficiency of home battery
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Table 2: Key parameters.

Parameter Description Symbol Value Unit

Step time ∆t 1 hour

Maximum PEV battery SOC SOCmax
ev 0.90 -

Minimum PEV battery SOC SOCmin
ev 0.20 -

Maximum home battery SOC SOCmax
b 0.90 -

Minimum home battery SOC SOCmin
b 0.20 -

PEV plugging-out time td 7:00 AM -

PEV plugging-in time ta 8:00 PM -

Lost efficiency ηevc / ηb 0.10

Maximum power from grid Pmax
grid 10 kW

Table 3: Optimal value (cb=100 $/kWh and cc=1000 $/kW).

n/year Qb,eap/kWh Fe/$ F/$ FnoB/$ Fdiff/$

1 1.75 2330.9 4765.8 2271.3 2494.5

2 11.90 1554.6 6558.7 4542.7 2016

3 14.49 1448.8 8055.1 6814.0 1241.1

4 16.03 1403.6 9477.2 9085.4 391.8

5 16.97 1382.0 10870 11357 -487

6 17.85 1366.2 12243 13682 -1439

7 18.56 1355.3 13603 15899 -2296

8 19.06 1348.5 14954 18171 -3217

9 19.53 1343.0 16300 20442 -4142

10 20.25 1335.5 17640 22713 -5073
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Table 4: Optimal values of home battery energy capacity for different types of PEVs.

Leaf Mode S E6 Volt Pruis

Qevc,eap (kWh) 24 85 82 16 5.2

Pmax
evc (kW) 3.6 10 10 3.6 3.6

Qb,eap in H2V mode (kWh) 17.85 17.85 17.85 17.85 17.85

Qb,eap in V2H mode (kWh) 15.9 15.84 15.84 15.98 16.69

Pb,max in H2V mode (kW) 2.26 2.26 2.26 2.26 2.26

Pb,max in V2H mode (kW) 2.26 2.26 2.26 2.26 2.26

Total cost with BESS – H2V ($) 12243 18188 17896 11463 10410

Total cost with BESS – V2H ($) 11827 17770 17478 11091 10250

Total cost without BESS – H2V ($) 13628 19574 19281 12848 11796

Total cost without BESS – V2H ($) 12919 18843 18550 12193 11517
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