84 research outputs found

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Predicting visual acuity with machine learning in treated ocular trauma patients

    Get PDF
    AIM: To predict best-corrected visual acuity (BCVA) by machine learning in patients with ocular trauma who were treated for at least 6mo. METHODS: The internal dataset consisted of 850 patients with 1589 eyes and an average age of 44.29y. The initial visual acuity was 0.99 logMAR. The test dataset consisted of 60 patients with 100 eyes collected while the model was optimized. Four different machine-learning algorithms (Extreme Gradient Boosting, support vector regression, Bayesian ridge, and random forest regressor) were used to predict BCVA, and four algorithms (Extreme Gradient Boosting, support vector machine, logistic regression, and random forest classifier) were used to classify BCVA in patients with ocular trauma after treatment for 6mo or longer. Clinical features were obtained from outpatient records, and ocular parameters were extracted from optical coherence tomography images and fundus photographs. These features were put into different machine-learning models, and the obtained predicted values were compared with the actual BCVA values. The best-performing model and the best variable selected were further evaluated in the test dataset. RESULTS: There was a significant correlation between the predicted and actual values [all Pearson correlation coefficient (PCC)>0.6]. Considering only the data from the traumatic group (group A) into account, the lowest mean absolute error (MAE) and root mean square error (RMSE) were 0.30 and 0.40 logMAR, respectively. In the traumatic and healthy groups (group B), the lowest MAE and RMSE were 0.20 and 0.33 logMAR, respectively. The sensitivity was always higher than the specificity in group A, in contrast to the results in group B. The classification accuracy and precision were above 0.80 in both groups. The MAE, RMSE, and PCC of the test dataset were 0.20, 0.29, and 0.96, respectively. The sensitivity, precision, specificity, and accuracy of the test dataset were 0.83, 0.92, 0.95, and 0.90, respectively. CONCLUSION: Predicting BCVA using machine-learning models in patients with treated ocular trauma is accurate and helpful in the identification of visual dysfunction

    Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis

    Get PDF
    Comprehensive analyses of multi-omics data may provide insights into interactions between different biological layers concerning distinct clinical features. We integrated data on the gut microbiota, blood parameters and urine metabolites of treatment-naive individuals presenting a wide range of metabolic disease phenotypes to delineate clinically meaningful associations. Trans-omics correlation networks revealed that candidate gut microbial biomarkers and urine metabolite feature were covaried with distinct clinical phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome revealed that variations in one of these three systems correlated with changes in the other two. In a specific note about clinical parameters of liver function, we identified Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills, Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with blood biomarkers for liver diseases. Variations in these microbiota features paralleled changes in specific urine metabolites. Network modeling yielded two core clusters including one large gut microbe-urine metabolite close-knit cluster and one triangular cluster composed of a gut microbe-blood-urine network, demonstrating close inter-system crosstalk especially between the gut microbiome and the urine metabolome. Distinct clinical phenotypes are manifested in both the gut microbiome and the urine metabolome, and inter-domain connectivity takes the form of high-dimensional networks. Such networks may further our understanding of complex biological systems, and may provide a basis for identifying biomarkers for diseases. Deciphering the complexity of human physiology and disease requires a holistic and trans-omics approach integrating multi-layer data sets, including the gut microbiome and profiles of biological fluids. By studying the gut microbiome on carotid atherosclerosis, we identified microbial features associated with clinical parameters, and we observed that groups of urine metabolites correlated with groups of clinical parameters. Combining the three data sets, we revealed correlations of entities across the three systems, suggesting that physiological changes are reflected in each of the omics. Our findings provided insights into the interactive network between the gut microbiome, blood clinical parameters and the urine metabolome concerning physiological variations, and showed the promise of trans-omics study for biomarker discovery.publishedVersio

    The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights

    Get PDF
    Antarctic krill (Euphausia superba) is Earth’smost abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research
    • …
    corecore