6,324 research outputs found

    Environmental, Thermal, and Electrical Susceptibility of Black Phosphorus Field Effect Transistors

    Full text link
    Atomic layers of black phosphorus (P) isolated from its layered bulk make a new two-dimensional (2D) semiconducting crystal with sizable direct bandgap, high carrier mobility, and promises for 2D electronics and optoelectronics. However, the integrity of black P crystal could be susceptible to a number of environmental variables and processes, resulting in degradation in device performance even before the device optical image suggests so. Here, we perform a systematic study of the environmental effects on black P electronic devices through continued measurements over a month under a number of controlled conditions, including ambient light, air, and humidity, and identify evolution of device performance under each condition. We further examine effects of thermal and electrical treatments on inducing morphology and, performance changes and failure modes in black P devices. The results suggest that procedures well established for nanodevices in other 2D materials may not directly apply to black P devices, and improved procedures need to be devised to attain stable device operation.Comment: in Journal of Vacuum Science & Technology B (2015

    Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy

    Full text link
    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively.Comment: Main Text: 13 Pages, 4 Figures; Supplementary Information: 5 Pages, 2 Figures, 2 Table

    First Principles Study of Adsorption of O2O_{2} on Al Surface with Hybrid Functionals

    Full text link
    Adsorption of O2O_{2} molecule on Al surface has been a long standing puzzle for the first principles calculation. We have studied the adsorption of O2O_{2} molecule on the Al(111) surface using hybrid functionals. In contrast to the previous LDA/GGA, the present calculations with hybrid functionals successfully predict that O2O_{2} molecule can be absorbed on the Al(111) surface with a barrier around 0.2∼\thicksim0.4 eV, which is in good agreement with experiments. Our calculations predict that the LUMO of O2O_{2} molecule is higher than the Fermi level of the Al(111) surface, which is responsible for the barrier of the O2O_{2} adsorption.Comment: 14 pages, 5 figure
    • …
    corecore