25 research outputs found

    Evaluation of analgesic, antioxidant and cytotoxic activities of ethanol extract of Clerodendrum viscosum Vent

    Get PDF
    Clerodendrum viscosum Vent. is a very common plant in Bangladesh which is locally familiar as “Bhat” or “Ghetu”. Here, the ethanol extract of whole plant part of C. viscosum and its various solvent (petroleum-ether, chloroform and ethyl acetate) fractions were subjected for the appraisal of analgesic, antioxidant and cytotoxic activities. Analgesic activity was tested by acetic acid-induced writhing model in Swiss albino mice. All the plant samples at the oral doses of 100- and 200 mg/kg body weight were found to exhibit significant (p<0.05) pain reducing activity in test animals. Highest inhibition of writhing was 62.38% by the ethyl acetate soluble fraction at dose of 200 mg/kg body weight while the standard drug diclofenac sodium (50 mg/kg) produces 76.14% reduction of abdominal writhing. DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical quenching assay was employed to determine the antioxidant potential of the plant samples while cytotoxic activity was checked by brine shrimp lethality bioassay. In DPPH radical scavenging assay, the plant samples showed prominent antioxidant activity. Among all, the ethyl acetate fraction showed maximum antioxidant potential with IC50 value of 28.02±0.53 μg/ml. In cytotoxic assay, the petroleum-ether fraction demonstrated strong cytotoxicity with LC50 value of 1.42±1.12 μg/ml. In summary, C. viscosum extracts possess significant analgesic, antioxidant and cytotoxic activities which rationalize its traditional use in folk medicine

    The influence of the Cyclin D1 870 G>A polymorphism as an endometrial cancer risk factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclin D1 is integral for the G1 to S phase of the cell cycle as it regulates cellular proliferation. A polymorphism in cyclin D1, 870 G>A, causes overexpression and supports uncontrollable cellular growth. This polymorphism has been associated with an increased risk of developing many cancers, including endometrial cancer.</p> <p>Methods</p> <p>The 870 G>A polymorphisms (rs605965) in the cyclin D1 gene was genotyped in an Australian endometrial cancer case-control population including 191 cases and 291 controls using real-time PCR analysis. Genotype analysis was performed using chi-squared (χ<sup>2</sup>) statistics and odds ratios were calculated using unconditional logistic regression, adjusting for potential endometrial cancer risk factors.</p> <p>Results</p> <p>Women homozygous for the variant cyclin D1 870 AA genotype showed a trend for an increased risk of developing endometrial cancer compared to those with the wild-type GG genotype, however this result was not statistically significant (OR 1.692 95% CI (0.939–3.049), p = 0.080). Moreover, the 870 G>A polymorphism was significantly associated with family history of colorectal cancer. Endometrial cancer patients with the homozygous variant AA genotype had a higher frequency of family members with colorectal cancer in comparison to endometrial cancer patients with the GG and combination of GG and GA genotypes (GG versus AA; OR 2.951, 95% CI (1.026–8.491), p = 0.045, and GG+GA versus AA; OR 2.265, 95% CI (1.048–4.894), p = 0.038, respectively).</p> <p>Conclusion</p> <p>These results suggest that the cyclin D1 870 G>A polymorphism is possibly involved in the development of endometrial cancer. A more complex relationship was observed between this polymorphism and familial colorectal cancer.</p

    Citrullinated glucose-regulated protein 78 is a candidate target for melanoma immunotherapy

    Get PDF
    IntroductionPost translational modification of proteins plays a significant role in immune recognition. In particular the modification of arginine to citrulline which is mediated by PAD enzymes is increased during cellular stress (autophagy) which permits the presentation of modified epitopes upon MHC class II molecules for recognition by CD4 T cells. Citrullination also occurs in tumour cells as a result of continuous environmental stresses and increased autophagy. We have shown in animal models the efficient stimulation of citrullinated epitope specific CD4 T cells resulting in dramatic elimination/regression of tumours. The ER chaperone glucose-regulated protein 78 (GRP78) is known to also be required for stress-induced autophagy and is directly linked to autophagosome formation. GRP78 is known to be highly expressed by many tumour types. In this study we investigate the potential of targeting citrullinated GRP78 for cancer therapy.MethodsA citrullinated GRP78 specific antibody was used to assess citrullinated GRP78 expression in murine and human tumour cells by flow cytometry. Five peptides were selected and used to vaccinate HLA transgenic mice and immune responses were characterised by ex vivo cytokine ELISpot assay. T cell repertoire in humans was assessed through proliferation assays and cytokine ELISpot assay. Citrullinated peptide was identified in murine B16 melanoma by mass spectrometry and the peptide vaccine was assessed for tumour therapy in a mouse melanoma model.ResultsWe show the identification CD4 T cell responses to one citrullinated GRP78 epitope that are restricted through HLA DP*0401 and HLA-DR*0101 alleles. This peptide is detected by mass spectrometry in B16 melanoma grown in vivo and citrulline specific CD4 responses to two peptides spanning this epitope mediate efficient therapy of established B16 melanoma tumours in HHDII/DP4 (p&lt;0.0001) transgenic mouse model. Finally, we demonstrate the existence of a repertoire of responses to the citrullinated GRP78 peptide in healthy individuals (p=0.0023) with 13/17 (76%) individuals showing a response to this peptide.ConclusionWe propose that citrullinated GRP78 is a candidate tumour antigen and vaccination against citrullinated GRP78 may provide a promising tumour therapy approach

    STUDY OF ANTIBACTERIAL ACTIVITIES OF THE VOLATILE OIL OF NIGELLA SATIVA LINN ON ANIMAL MODEL

    No full text
    In-vivo antibacterial activity of the volatile oil of Nigella sativa linn was carried out in mice. Mice was infected by inoculation of staph.Aureus and result shows successful iradication of bacterial colony. (Bangladesh J Physiol Pharmacol 2006; 22(112) : 22-24) The research of new antimicrobial chemotherapeutic agents occupies attention throughout the world. Generally the test animal for preliminary evaluation is usually the mouse. Here therapy and infection are given by the sam

    Delta Atelier : Hot spot Haor

    No full text

    Extravillous trophoblast and endothelial cell crosstalk mediates leukocyte infiltration to 1 the early remodelling decidual spiral arteriole wall.

    No full text
    Abstract Decidual spiral arteriole (SpA) remodeling is essential to ensure optimal uteroplacental blood flow during human pregnancy, yet very little is known about the regulatory mechanisms. Uterine decidual NK (dNK) cells and macrophages infiltrate the SpAs and are proposed to initiate remodeling before colonization by extravillous trophoblasts (EVTs); however, the trigger for their infiltration is unknown. Using human first trimester placenta, decidua, primary dNK cells, and macrophages, we tested the hypothesis that EVTs activate SpA endothelial cells to secrete chemokines that have the potential to recruit maternal immune cells into SpAs. Gene array, real-time PCR, and ELISA analyses showed that treatment of endothelial cells with EVT conditioned medium significantly increased production of two chemokines, CCL14 and CXCL6. CCL14 induced chemotaxis of both dNK cells and decidual macrophages, whereas CXCL6 also induced dNK cell migration. Analysis of the decidua basalis from early pregnancy demonstrated expression of CCL14 and CXCL6 by endothelial cells in remodeling SpAs, and their cognate receptors are present in both dNK cells and macrophages. Neutralization studies identified IL-6 and CXCL8 as factors secreted by EVTs that induce endothelial cell CCL14 and CXCL6 expression. This study has identified intricate crosstalk between EVTs, SpA cells, and decidual immune cells that governs their recruitment to SpAs in the early stages of remodeling and has identified potential key candidate factors involved. This provides a new understanding of the interactions between maternal and fetal cells during early placentation and highlights novel avenues for research to understand defective SpA remodeling and consequent pregnancy pathology.</jats:p

    Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth

    No full text
    Revaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells. Media from wild-type EVT or Swan71 cells transfected with wild-type STOX1 stimulated: endothelial chemokine expression, angiogenesis, and decidual natural killer cell and monocyte migration. In contrast, Y153H EVT conditioned medium, Swan71 transfected with the Y153H plasmid, or HTR8/SVneo media had no effect. Genotyping of placental decidual cocultures demonstrated association of the placental STOX1 CC allele with failed vascular remodeling. Decidual GG NODAL R165H increased in failed cocultures carrying the placental CC alleles of STOX1. Multivariate analysis of the placental cohort showed that the STOX1 C allele correlated with premature birth, with or without severe early-onset preeclampsia, and small for gestational age babies. In conclusion, placental STOX1 Y153H is a precipitating factor in preterm birth and placental preeclampsia due to defects in early utero-placental development
    corecore