123 research outputs found

    Refraction Wiggles for Measuring Fluid Depth and Velocity from Video

    Get PDF
    We present principled algorithms for measuring the velocity and 3D location of refractive fluids, such as hot air or gas, from natural videos with textured backgrounds. Our main observation is that intensity variations related to movements of refractive fluid elements, as observed by one or more video cameras, are consistent over small space-time volumes. We call these intensity variations “refraction wiggles”, and use them as features for tracking and stereo fusion to recover the fluid motion and depth from video sequences. We give algorithms for 1) measuring the (2D, projected) motion of refractive fluids in monocular videos, and 2) recovering the 3D position of points on the fluid from stereo cameras. Unlike pixel intensities, wiggles can be extremely subtle and cannot be known with the same level of confidence for all pixels, depending on factors such as background texture and physical properties of the fluid. We thus carefully model uncertainty in our algorithms for robust estimation of fluid motion and depth. We show results on controlled sequences, synthetic simulations, and natural videos. Different from previous approaches for measuring refractive flow, our methods operate directly on videos captured with ordinary cameras, do not require auxiliary sensors, light sources or designed backgrounds, and can correctly detect the motion and location of refractive fluids even when they are invisible to the naked eye.Shell ResearchMotion Sensing Wi-Fi Sensor Networks Co. (Grant 6925133)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Microsoft Research (PhD Fellowship

    3D Fluid Flow Estimation with Integrated Particle Reconstruction

    Full text link
    The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps, utilizing either a pure Eulerian or pure Lagrangian approach. Eulerian methods perform a voxel-based reconstruction of particles per time step, followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. Alternatively, Lagrangian methods reconstruct an explicit, sparse set of particles and track the individual particles over time. Physical constraints can only be incorporated in a post-processing step when interpolating the particle tracks to a dense motion field. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-res input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (~70%) improved results over our recently published baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of sota tracking-based methods that require much longer sequences.Comment: To appear in International Journal of Computer Vision (IJCV

    Divergence-Free Motion Estimation

    Get PDF
    International audienceThis paper describes an innovative approach to estimate motion from image observations of divergence-free flows. Unlike most state-of-the-art methods, which only minimize the divergence of the motion field, our approach utilizes the vorticity-velocity formalism in order to construct a motion field in the subspace of divergence free functions. A 4DVAR-like image assimilation method is used to generate an estimate of the vorticity field given image observations. Given that vorticity estimate, the motion is obtained solving the Poisson equation. Results are illustrated on synthetic image observations and compared to those obtained with state-of-the-art methods, in order to quantify the improvements brought by the presented approach. The method is then applied to ocean satellite data to demonstrate its performance on the real images

    The Impact of Online Social Networks on Decision Support Systems

    Get PDF
    Previous research on this matter had already determined that many concepts are encompassed by both online social networking and decision support systems research. Due to the large number of concepts and using clustering techniques, we were able to determine four concept clusters, namely: the technical infrastructure, online communities, network analysis and knowledge management. Then, we intended to gain further knowledge on how those concepts influenced DSS related research and the contribution of each cluster to the support of the phases of decision-making process. We also wanted to perceive the interconnections among the concept clusters themselves, for which we used structural equation modeling techniques. The obtained results evidence that not only online social networks are being used as a technical infrastructure to support the three decision making phases and to support knowledge management and online communities, but also that the other clusters only regard the intelligence phase of the decision process.info:eu-repo/semantics/publishedVersio

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media

    Get PDF
    Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity
    • …
    corecore