11 research outputs found

    Multiple, object-oriented segmentation methods of mammalian cell tomograms

    Get PDF

    Optimized Segmentation of Cellular Tomography through Organelles' Morphology and Image Features

    Get PDF
    Computational tracing of cellular images generally requires painstaking job in optimizing parameter(s). By incorporating prior knowledge about the organelle’s morphology and image features, the required number of parameter tweaking can be reduced substantially. In practical applications, however, the general organelles’ features are often known in advance, yet the actual organelles’ morphology is not elaborated. Two primary contributions of this paper are firstly the classification of insulin granules based on its image features and morphology for accurate segmentation – mainly focused at pre-processing image segmentation and secondly the new hybrid meshing quantification is presented. The method proposed in this study is validated on a set of manually defined ground truths. The study of insulin granules in particular; the location, and its image features has also opened up other options for future studies

    Reduced cerebral vascular fractal dimension among asymptomatic individuals as a potential biomarker for cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease is a neurological disease frequently found in the elderly and detected on neuroimaging, often as an incidental finding. White matter hyperintensity is one of the most commonly reported neuroimaging markers of CSVD and is linked with an increased risk of future stroke and vascular dementia. Recent attention has focused on the search of CSVD biomarkers. The objective of this study is to explore the potential of fractal dimension as a vascular neuroimaging marker in asymptomatic CSVD with low WMH burden. Df is an index that measures the complexity of a self-similar and irregular structure such as circle of Willis and its tributaries. This exploratory cross-sectional study involved 22 neurologically asymptomatic adult subjects (42 ± 12 years old; 68% female) with low to moderate 10-year cardiovascular disease risk prediction score (QRISK2 score) who underwent magnetic resonance imaging/angiography (MRI/MRA) brain scan. Based on the MRI findings, subjects were divided into two groups: subjects with low WMH burden and no WMH burden, (WMH+; n = 8) and (WMH−; n = 14) respectively. Maximum intensity projection image was constructed from the 3D time-of-flight (TOF) MRA. The complexity of the CoW and its tributaries observed in the MIP image was characterised using Df. The Df of the CoW and its tributaries, i.e., Df (w) was significantly lower in the WMH+ group (1.5172 ± 0.0248) as compared to WMH− (1.5653 ± 0.0304, p = 0.001). There was a significant inverse relationship between the QRISK2 risk score and Df (w), (rs = −.656, p = 0.001). Df (w) is a promising, non-invasive vascular neuroimaging marker for asymptomatic CSVD with WMH. Further study with multi-centre and long-term follow-up is warranted to explore its potential as a biomarker in CSVD and correlation with clinical sequalae of CSVD

    Motion Capture Technologies for Ergonomics: A Systematic Literature Review

    Get PDF
    Muscular skeletal disorder is a difficult challenge faced by the working population. Motion capture (MoCap) is used for recording the movement of people for clinical, ergonomic and rehabilitation solutions. However, knowledge barriers about these MoCap systems have made them difficult to use for many people. Despite this, no state-of-the-art literature review on MoCap systems for human clinical, rehabilitation and ergonomic analysis has been conducted. A medical diagnosis using AI applies machine learning algorithms and motion capture technologies to analyze patient data, enhancing diagnostic accuracy, enabling early disease detection and facilitating personalized treatment plans. It revolutionizes healthcare by harnessing the power of data-driven insights for improved patient outcomes and efficient clinical decision-making. The current review aimed to investigate: (i) the most used MoCap systems for clinical use, ergonomics and rehabilitation, (ii) their application and (iii) the target population. We used preferred reporting items for systematic reviews and meta-analysis guidelines for the review. Google Scholar, PubMed, Scopus and Web of Science were used to search for relevant published articles. The articles obtained were scrutinized by reading the abstracts and titles to determine their inclusion eligibility. Accordingly, articles with insufficient or irrelevant information were excluded from the screening. The search included studies published between 2013 and 2023 (including additional criteria). A total of 40 articles were eligible for review. The selected articles were further categorized in terms of the types of MoCap used, their application and the domain of the experiments. This review will serve as a guide for researchers and organizational management

    Mapping breast cancer research in Malaysia: a scientometric analysis

    Get PDF
    The purpose of this study was to provide an overview of breast cancer researches in Malaysia. Besides, this study aimed to identify the trends of breast cancer research in Malaysia. This study retrieved 343 related publications from the Scopus database. After removing one duplicated publication and another two publications that did not meet the study criteria, the remaining 340 publications were analysed using a bibliometric analysis and trending keywords analysis. This study found that the annual growth rate of publications was 7.4%. The majority of the publications were research articles and multi-author. The most productive author was Yip CH with 69 publications, and the University of Malaya was the top institution in Malaysia related to this research area. For the last five years, there were no dominant themes in this research area. However, this study found two emerging clusters of breast cancer research in Malaysia, which related to medical data analytics and precision medicine in genomic breast cancer. Overall, breast cancer research in Malaysia is progressing towards a positive side, though a few improvements are needed. As the funding in this research area is scarce, proper allocation of the resources is needed

    HYBRID IMPROVED BACTERIAL SWARM OPTIMIZATION ALGORITHM FOR HAND-BASED MULTIMODAL BIOMETRIC AUTHENTICATION SYSTEM

    No full text
    This paper proposes a Hybrid Improved Bacterial Swarm (HIBS) optimization algorithm for the minimization of Equal Error Rate (EER) as a performance measure in a hand-based multimodal biometric authentication system. The hybridization of the algorithm was conducted by incorporating Bacterial Foraging Optimization (BFO) and Particle Swarm Optimization (PSO) algorithm to mitigate weaknesses in slow and premature convergence. In the proposed HIBS algorithm, the slow convergence of BFO algorithm was mitigated by using the random walk procedure of Firefly algorithm as an adaptive varying step size instead of using fixed step size. Concurrently, the local optima trap (i.e. premature convergence) of PSO algorithm was averted by using mutation operator. The HIBS algorithm was tested using benchmark functions and compared against classical BFO, PSO and other hybrid algorithms like Genetic Algorithm-Bacterial Foraging Optimization (GA-BFO), Genetic Algorithm-Particle Swarm Optimization (GA-PSO) and other BFO-PSO algorithms to prove its exploration and exploitation ability. It was observed from the experimental results that the EER values, after the influence of the proposed HIBS algorithm, dropped to 0.0070% and 0.0049% from 1.56% and 0.86% for the right and left hand images of the Bosphorus database, respectively. The results indicated the ability of the proposed HIBS in optimization problem where it optimized relevant weights in an authentication system.

    HYBRID IMPROVED BACTERIAL SWARM OPTIMIZATION ALGORITHM FOR HAND-BASED MULTIMODAL BIOMETRIC AUTHENTICATION SYSTEM

    Get PDF
    This paper proposes a Hybrid Improved Bacterial Swarm (HIBS) optimization algorithm for the minimization of Equal Error Rate (EER) as a performance measure in a hand-based multimodal biometric authentication system. The hybridization of the algorithm was conducted by incorporating Bacterial Foraging Optimization (BFO) and Particle Swarm Optimization (PSO) algorithm to mitigate weaknesses in slow and premature convergence. In the proposed HIBS algorithm, the slow convergence of BFO algorithm was mitigated by using the random walk procedure of Firefly algorithm as an adaptive varying step size instead of using fixed step size. Concurrently, the local optima trap (i.e. premature convergence) of PSO algorithm was averted by using mutation operator. The HIBS algorithm was tested using benchmark functions and compared against classical BFO, PSO and other hybrid algorithms like Genetic Algorithm-Bacterial Foraging Optimization (GA-BFO), Genetic Algorithm-Particle Swarm Optimization (GA-PSO) and other BFO-PSO algorithms to prove its exploration and exploitation ability. It was observed from the experimental results that the EER values, after the influence of the proposed HIBS algorithm, dropped to 0.0070% and 0.0049% from 1.56% and 0.86% for the right and left hand images of the Bosphorus database, respectively. The results indicated the ability of the proposed HIBS in optimization problem where it optimized relevant weights in an authentication system.

    Hybrid Improved Bacterial Swarm Optimization Algorithm for Hand-Based Multimodal Biometric Authentication System

    No full text
    This paper proposes a Hybrid Improved Bacterial Swarm (HIBS) optimization algorithm for the minimization of Equal Error Rate (EER) as a performance measure in a hand-based multimodal biometric authentication system. The hybridization of the algorithm was conducted by incorporating Bacterial Foraging Optimization (BFO) and Particle Swarm Optimization (PSO) algorithm to mitigate weaknesses in slow and premature convergence. In the proposed HIBS algorithm, the slow convergence of BFO algorithm was mitigated by using the random walk procedure of Firefly algorithm as an adaptive varying step size instead of using fixed step size. Concurrently, the local optima trap (i.e., premature convergence) of PSO algorithm was averted by using mutation operator. The HIBS algorithm was tested using benchmark functions and compared against classical BFO, PSO and other hybrid algorithms like Genetic Algorithm-Bacterial Foraging Optimization (GA-BFO), Genetic Algorithm-Particle Swarm Optimization (GA-PSO) and other BFO-PSO algorithms to prove its exploration and exploitation ability. It was observed from the experimental results that the EER values, after the influence of the proposed HIBS algorithm, dropped to 0.0070% and 0.0049% from 1.56% and 0.86% for the right- and left-hand images of the Bosphorus database, respectively. The results indicated the ability of the proposed HIBS in optimization problem where it optimized relevant weights in an authentication system

    Factors Influencing Mammographic Density in Asian Women: A Retrospective Cohort Study in the Northeast Region of Peninsular Malaysia

    No full text
    Mammographic density is a significant risk factor for breast cancer. In this study, we identified the risk factors of mammographic density in Asian women and quantified the impact of breast density on the severity of breast cancer. We collected data from Hospital Universiti Sains Malaysia, a research- and university-based hospital located in Kelantan, Malaysia. Multivariable logistic regression was performed to analyse the data. Five significant factors were found to be associated with mammographic density: age (OR: 0.94; 95% CI: 0.92, 0.96), number of children (OR: 0.88; 95% CI: 0.81, 0.96), body mass index (OR: 0.88; 95% CI: 0.85, 0.92), menopause status (yes vs. no, OR: 0.59; 95% CI: 0.42, 0.82), and BI-RADS classification (2 vs. 1, OR: 1.87; 95% CI: 1.22, 2.84; 3 vs. 1, OR: 3.25; 95% CI: 1.86, 5.66; 4 vs. 1, OR: 3.75; 95% CI: 1.88, 7.46; 5 vs. 1, OR: 2.46; 95% CI: 1.21, 5.02; 6 vs. 1, OR: 2.50; 95% CI: 0.65, 9.56). Similarly, the average predicted probabilities were higher among BI-RADS 3 and 4 classified women. Understanding mammographic density and its influencing factors aids in accurately assessing and screening dense breast women
    corecore