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Abstract 

 

Electron tomography (ET) is a powerful tool for the 3D mapping of the complex 3D sub-cellular 

structures of cells. It can provide detailed structural data for the extraction, segmentation and 

annotation (e.g. organelle type, spatial location, volume, surface area, shape and cellular 

interactions). The ability to map and model sub-cellular volumes is dependent on the quality of the 

electron tomography data and the ability to segment the resolved features accurately. In particular 

low signal to noise ratios can resolute in the loss of structural data as well as the incorrect 

identification of false positives. Manual segmentation is currently considered the gold standard but 

is subjective and the process is slow. This is highlighted by the finding that the careful segmentation 

of ~1% of an insulin-secreting HIT-T15 cell required approximately 3600 person-hours (Marsh et 

al., 2001a). Consequently as the volume and quality of cellular electron tomography data increases 

so will the need for automated segmentation approaches. Such automated processes will likely 

require the integration of image filtrations methods, boundary-based and region-based segmentation 

algorithms and edge detector algorithms. To be of real utility these automated methods must be fast 

as well as accurate ideally across multiple scales ranging from tissues to molecules. Semi-

automated approaches will also be of value if they are able to yield significant gains in data quality 

and speed.  

 

The process of segmentation is principally made difficult by limitations caused by low signal-to-

noise ratio (SNR) of volumetric image data typical of that generated by electron tomography. 

Indeed compared with MRI and CT data-sets electron microscopy has a low SNR and so is good 

test system for the development of segmentation algorithm.  To date the low SNR of electron 

tomography data has resulted in limited examples of successful automatic segmentation. Improved 

image pre-processing techniques, such as increasing the SNR through improved sample preparation 

and imaging, as well as the careful application of denoising algorithms in conjunction with carefully 

managed segmentation processes have proven most beneficial, but there is still substantial scope for 

improvement.  

 

The aim of this project has been to analyse the pancreatic beta cell tomograms and to conduct a 

detailed investigation into the structural diversity of their insulin granules, mitochondria and the 

Golgi apparatus to provide a framework for their classification. The image and structural data 

obtained by this process was used to guide the development of an image processing pipeline for the 
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semi-automated segmentation of specific classes of these organelles on the path to developing more 

advanced automated processes. 

 

 Chapter 1 provides an overview of biology of pancreatic beta cells and the process of insulin 

secretion as well as electron tomography and the motivation for the development of automated 

segmentation processes.  

 

Chapter 2 describes the methods used to prepare and analyse these data sets. A number of cellular 

tomograms of insulin-secreting pancreatic beta cells recorded at high (i.e. 4-5 nm) resolution were 

used as primary ‘proof-of-concept’ datasets for this project. To control the number of datasets (i.e. 

organelle sub-volumes) for the project, three key organelles of insulin secretion were selected; the 

Golgi apparatus (GA), mitochondria (MC) and insulin granules (IG).  

 

Chapter 3 introduces and describes the proposed segmentation pipeline which is referred to as the 

‘cellular tomography segmentation’ (CTS) workflow. It also introduces a scoring system that is 

based on mesh surface area (MSA) of an organelle’s 3D model and provides a useful, quantitative 

comparison for assessing the quality of various segmentation approaches, compared with the results 

obtained by manual tracing. Overall this chapter covers significant computational considerations for 

the development of segmentation algorithms for electron tomography.  

 

Chapter 4 introduces the concept of the categorisation of sub-cellular organelles according to their 

image properties both to provide a basis for morphological classification of organellar subtypes and 

to enable improved image segmentation of each of these subclasses. The performances of tracing 

tools are quantitatively compared and conclusions on best performance drawn in this chapter. 

 

Concurrent with the research described here, a new filter for automated edge detection-based 

processing of 3D volumetric image data was developed in the Hankamer Lab at the University of 

Queensland. The 3D Bilateral Edge detector (3D BLE) (Ali et al., 2012) yielded their first 

successful results in automatically segmenting organelles in high resolution electron tomograms. In 

Chapter 5 the 3D BLE filter was used to segment the selected data sets for comparison with semi-

automated processes based on the cellular tomography segmentation’ (CTS) workflow. The 

segmentation results obtained using the best detected settings identified for each organelle sub-

volume were compared to those obtained using the semi-automated CTS workflow, as outlined in 

Chapters 3 and 4. This comparison suggested that for the datasets and conditions analysed, the CTS 
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workflow was superior in performance, both in terms of quantitative and qualitative comparison. In 

terms of quality it proved comparable to manual tracing but also better than the best detected 3D 

BLE settings. 

 

Overall, this newly developed semi-automated CTS workflow and the image categorisation 

technique enable improved rates of segmentation of sub-cellular compartments. It also enables 

rapid, quantitative comparison of the morphology and function of three key organelles of insulin 

secretion of non-stimulated pancreatic beta cells.  It also offered sets of scoring objectives for 

different organelle sub-groups to expedite the process of optimising method settings not currently 

afforded by any other technique.   
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1.1 Background: Biological motivation for this study 

 

1.1.1 Basic biology of the endocrine pancreas 

 

1.1.1.1 Islets of Langerhans: home of the beta cell 

The islets of Langerhans are regions of specialised tissue within the pancreas – an organ located in 

the abdomen behind the stomach – that is important in converting the food we eat into fuel for the 

body’s cells. Whereas the bulk of the pancreas is comprised of exocrine cells which are responsible 

for the production and release of digestive enzymes into the gut, these pancreatic islets consist of a 

mixture of several different types of endocrine cells (Figure 1.1) which play important roles in 

regulating the body’s metabolism through the production of several key hormones for release 

directly into the bloodstream. The islets of Langerhans consist mostly (~80%) of insulin-secreting 

beta cells which form the core of the tissue. They are surrounded by a mantle comprised of the other 

major islet endocrine cell types such as the glucagon-releasing alpha cells, somatostatin-producing 

delta cells, and pancreatic polypeptide-secreting PP cells (Orci and Unger, 1975, Gepts and 

Lecompte, 1981). A new population of specialised islet (epsilon) cells that produce the peptide 

ghrelin was recently identified (Prado et al., 2004). The islets therefore form a complex paracrine 

feedback system for maintaining systemic blood glucose homeostasis.  

 

The islets of Langerhans were originally discovered in 1869 by German pathological anatomist Paul 

Langerhans. Collectively, they account for 1-2% of the mass of the pancreas. The proportion of 

different cell types in each islet depends on the species, stage of development and also the location 

of each islet within the organ (Baetens et al., 1979, Elayat et al., 1995). A healthy adult human 

pancreas contains about one million islets, with the average islet containing approximately 2,500 

cells, although this can vary anywhere between 10 and 10,000 cells (Weir & Bonner-Weir 1990). 

An average mammalian islet is 0.1-0.2 mm in diameter with the mean diameter of individual 

component cells measuring ~10-12 µm (Jo et al. 2007).  
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Figure 1.1 Location and function of human beta cell in the islets of Langerhans 

(1) The pancreas is located below the stomach and in humans is connected to the duodenum via a small pancreatic duct which 

releases digestive enzymes. (2) Islets are comprised predominantly of beta cells with a small number of alpha and delta cells making 

up the outer layer. (3) Insulin secretion into the blood stream by beta cells is stimulated in response to elevated blood glucose. (4) 

Insulin released into the circulation triggers glucose uptake by muscle and fat cells. (Winslow, 2001) Figure 7.1. 

 

1.1.1.2 Pancreatic beta cells and relation to diabetes mellitus 

The beta cells produce, store and secrete insulin, a physiological hypoglycaemic hormone that 

regulates the blood glucose levels, as well as C-peptide, which is a by-product of insulin processing 

within the beta cell that helps prevent neuropathy and other symptoms of diabetes related to 

vascular deterioration (Rorsman et al., 2000). Insulin release from beta cells in vivo is normally a 

biphasic process, as illustrated in (Figure 1.2). The initial quantity of insulin secreted upon glucose 

stimulation depends on the amount of stored insulin available for immediate release. Once the 

stores of readily releasable insulin are depleted, a second phase of insulin release is initiated 

(Rorsman and Renstrom, 2003). This second release process is prolonged since insulin that has 

already been synthesised, processed and packaged into secretory granules stored deeper within the 

cytoplasm, must be transported to the cell surface. The vesicles undergo subsequent fusion and as a 

result secret insulin into the blood stream, under conditions of high blood glucose levels. 

Furthermore, beta cells also have to regenerate the stores of insulin depleted during both phases of 

release. Although insulin release into the bloodstream occurs primarily in response to high levels of 

extracellular glucose, there are several important paracrine and autocrine interactions among islet 

endocrine cells which also act to regulate insulin secretion (Aspinwall, 1999). Whereas insulin acts 
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to lower blood sugar, another hormone (glucagon) produced by alpha cells within pancreatic islets, 

acts to raise blood sugar. By working in concert in this way, islet cells are able to maintain proper 

blood sugar levels, which are crucial to maintain normal function and health of key organs 

including the brain, liver, and kidneys. Consequently, dysfunction or death of beta cells affects 

insulin production and release, eventually manifesting as the chronic disease diabetes mellitus, 

commonly known as diabetes.  

 

Diabetes mellitus comprises a number of disease states that ultimately lead to a reduction in the 

production and/or secretion of the hormone, insulin. Broadly, diabetes is a metabolic disease that is 

characterised by abnormally high levels of glucose in the blood. Normally the pancreas releases 

insulin to help the body store and use sugar and fat from food. Diabetes can occur when one or 

more of the following three situations occurs: (1) the pancreas does not produce any insulin, (2) the 

pancreas produces very little insulin, or (3) the body does not respond appropriately to insulin, a 

condition called ‘insulin resistance’(Alberti and Zimmet, 1998).  

 

Diabetes is typically classified as one of two main forms of the disease: type 1 or type 2. Type 1 

diabetes, also called juvenile diabetes or insulin-dependent diabetes mellitus (IDDM), is a chronic 

autoimmune disease that destroys beta cells and is lethal unless treated with exogenous insulin. 

Type 2 diabetes, formerly known as adult-onset diabetes or non-insulin dependent diabetes 

(NIDDM) is marked by high-levels of blood sugar due to beta cell dysfunction (insulin resistance) 

(Alberti and Zimmet, 1998).  

 

 

 



 CHAPTER 1-GENERAL INTRODUCTION  

6 

 

 

Figure 1.2 Process of insulin secretion. Rising blood glucose levels trigger insulin release by beta cells. 

Specifically, glucose uptake by the GLUT2 glucose transporter protein raises the intracellular glucose concentration, glycolysis and 

respiration and thereby increases the intracellular ATP:ADP ratio. The rise in intracellular ATP in turn inactivates the ATP-sensitive 

potassium channel which results in depolarization of the plasma membrane. This depolarization in turn activates the calcium channel 

which allows calcium ions to flow into the cell. This rise in intracellular calcium triggers the exocytotic release of insulin from the 

storage granule pools within the beta cell’s cytoplasm. (Cartailler, 2004) Figure 2.  

 

1.1.2 Insulin secretory pathway 

The insulin secretory pathway comprises a series of steps that involves a number of functionally 

distinct membrane-bound organelles which include the Golgi apparatus, mitochondria, insulin 

granules, lysosomes, the endosplasmic reticulum (ER) and vesicles. In general, there are two 

different patterns of secretion. One pattern is referred to as regulated secretion (Figure 1.3 arrow 1-

5), as proteins are continuously secreted from the cell regardless of environmental factors. No 

external signals are required to initiate this process. The second pattern is referred to as constitutive 

secretion (Figure 1.3 arrow 3b) for which an external signal is required before secretion occurs.  
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Figure 1.3 The insulin secretory pathway involves both regulated and constitutive release. 

Cartoon image showing the organelles involved in insulin production and secretion: the rough endoplasmic reticulum (ER), transport 

vesicles, Golgi apparatus, immature granules, mature granules and mitochondria. (Noske, 2010) Figure 1.3.  

 

1.1.2.1 The endoplasmic reticulum (ER) 

All insulin secretion begins in the rough ER, where it is converted from its initial precursor form 

(pre-proinsulin) and packaged into small transport vesicles. These are transported from the ER to 

the cis-most Golgi cisternae, from where proinsulin gradually progresses to the trans-most cisternae 

of the Golgi stack. During packaging into vesicles, the precursor peptide is cleaved off to generate 

proinsulin. Within the trans-most Golgi cisternae, regions of membrane enclosing proinsulin bud off 

to form immature granules. Eventually, as the proinsulin undergoes further processing within the 

acidified granule interior to yield the mature form of insulin and C-peptide, the concentrated insulin 

typically begins to crystallize, at which point the granule is called a mature granule. In the final 

stage of release, the mature granules fuse with the plasma membrane and release the insulin from 

the cell following stimulation by glucose or other ‘secretagogues’ (i.e. substance like hormone that 

causes or stimulates another substance to be secreted) in the blood stream. A small amount (<1%) 

of proinsulin is constitutively released to the cell surface via small secretory vesicles which also bud 

directly from the Golgi apparatus but take an alternative route to the plasma membrane (Figure 1.3 

arrow 3b).  
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1.1.2.2 Intracellular insulin storage: mature granules 

Mature granules represent the beta cells’ which act as storage sites for the vast reserves of insulin 

produced. A typical unstimulated mouse beta cell contains approximately 10,000 mature granules 

(Olofsson et al., 2004); each measures approximately 200-300 nm in diameter (Hutton, 1989) and 

contains 150,000-280,000 insulin molecules (Howell, 1974). Mature granules represent different 

pools; a non-releasable ‘reserve pool’, a ‘readily releasable pool’ (RRP) and an ‘immediately 

releasable pool’.  

 

1.1.2.3 Transport mechanisms: the Golgi apparatus 

The Golgi apparatus - first described over a century ago (Golgi, 1898) - is a key organelle found in 

all eukaryotic cells. Its primary function is to further modify macromolecules (e.g. lipids, proteins) 

by special enzymes possessed by the Golgi stacks after their export from the ER. This process is 

particularly important in the maturation of many proteins, for example prior to secretion. In normal 

mammalian cells, the Golgi structure consists of a number of discrete stacks of fenestrated, flattened 

membranous compartments called cisternae, which are laterally inter-connected to form a ribbon-

like structure (Marsh et al., 2001a, Marsh and Howell, 2002, Noske et al., 2008). The Golgi 

typically consists of five to seven individual cisternae, including the trans-most cisternae (Griffiths 

et al., 1989), and are somewhat analogous to a stack of pancakes; this morphology contributes to a 

high surface-to-volume ratio. 

 

The Golgi apparatus plays a principal role in sorting, modifying, packaging and trafficking various 

proteins. It can be divided into three different spatial and functional regions, termed the cis-, 

medial-, and trans-cisternae, each distinguished by different marker enzymes. These regions 

selectively modify the different types of proteins as they progress along the cis-trans axis. From the 

ER, membrane transport vesicles and tubules carrying newly synthesized proteins fuse with cis-

Golgi cisternae. Their protein cargo then progressively transits across the stack to the trans-Golgi 

cisternae, where proteins are then sorted and packaged for shipment to the required destination 

either within the cell (e.g. lysosome) or for release to the extracellular space. In some cases, tubular 

connections between non-adjacent (and more rarely, adjacent) cisternae have been observed and 

this in conjunction with functional stratification of the different regions of the stack. For membrane 

transport and luminal cargo, there are three main theories: 1) ‘cisternal progression’, 2) ‘vesicular 

transport’ and 3) ‘tubule-mediated trafficking’ (Farquhar and Palade, 1998, Marsh et al., 2004, 

Pelham, 1998). Tomographic studies have successfully provided evidence for all three mechanisms 
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and have also demonstrated that all of them can act in concert in the same region of the Golgi 

(Marsh, 2005). To fuel this activity, the Golgi requires energy that comes in the form of adenosine 

triphosphate (ATP) produced by mitochondria.  

 

1.1.2.4 Cellular power plants: Mitochondria 

Mitochondria are membrane-enclosed organelles found in most eukaryotic cells. Collectively they 

mediate cellular ATP production, resulting in their description as ‘cellular power plants’. Several 

fundamental changes to the way scientists think about mitochondrial structure and function have 

been reported in the past decade (Kargul and Laurent, 2009, Ryan and Hoogenraad, 2007). 

Mitochondria comprise multiple subregions that carry out specialised functions. They are bounded 

by an outer membrane layer, which is separated by a small inter-membrane space from the inner 

membrane layer that is organised into cristae and the matrix (the space within the cristae) (Figure 

1.4). As the generators of the cell that supply the chemical energy (ATP) necessary to carry out 

basic cellular activities, mitochondria tend to have a heavy/dark density when viewed by electron 

microscopy (EM). Morphologically, mitochondria can be quite complex, as they often branch and 

form irregular shapes presumably due to fission or fusion events determined by the energy 

state/needs (Hales, 2010) of the cell prior to fixation ahead of ultrastructural analysis.  

 

Fusion and fission events appear to regulate mitochondrial shape and morphology to a remarkable 

degree. Non-branched mitochondria display a relatively consistent shape when viewed by EM from 

one section to the next (usually tubular or pancake-like) and exist as ‘singular' spatially discrete 

objects in the cytoplasm (meaning that their outer membrane does not contact any other 

mitochondrion or other organelles/compartments). The mitochondria can also be branched in some 

regions. It should be noted that it remains a subject of debate as to whether these branched 

mitochondria should be considered one mitochondrion, two mitochondria in the process of fusion 

(or fission), or three separate mitochondria (Chen and Chan, 2005, Frazier et al., 2006, Karbowski 

and Youle, 2003, Okamoto and Shaw, 2005, Perkins and Frey, 2000). 
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Figure 1.4 Mitochondrial compartments and subcompartments with descriptions of specific processes and proteins. 

Abbreviations: Bcl-2-associated X protein; Bcl-2, B-cell lymphoma protein 2; Opa1, Optic atrophy 1; SAM, sorting and assembly 

machinery; sTIMs, small TIM proteins; TIM, translocase of the mitochondrial inner membrane; TOM, translocase of the 

mitochondrial outer membrane. Adapted from (Ryan and Hoogenraad, 2007).  

 

1.1.3 Limitations of conventional electron microscopy (EM) studies 

In conventional EM, thin (40-100 nm) sections are cut and imaged in two dimensions (2D) 

(Ladinsky et al., 2002, Marsh, 2005). The benefit of this technique is improved when combined 

with EM stereological techniques (Russ and DeHoff, 2000). This combination of techniques (spatial 

sampling based on small numbers of 2D images) has underpinned numerous morphometric studies 

to quantify changes in Golgi structure (Derganc et al., 2006, Griffiths et al., 1989). However, 

neither of these methods offers reliable insights into the three dimensional (3D) detail or 

connectivity between Golgi cisternae (Marsh et al., 2001a). Thin sections from multiple cells and/or 

multiple regions from a single cell are unable to reveal the complete 3D organisation of the Golgi 

and other structures involved in the secretory pathway (Ladinsky et al., 1999). Thus, this PhD 

project centred on developing improved methods for analysing and characterising variations in 

organelle morphology based upon the semi-automated image processing and segmentation of 

subregions extracted from high resolution 3D image volumes previously generated by the Marsh 

laboratory using the technique of electron tomography (ET).  
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1.2 Electron Tomography (ET) 

 

1.2.1 Introduction to ET and data collection techniques 

Computed axial tomography (CAT) – also referred to as computed tomography (CT) - is a widely 

used technique for visualising the internal structure of an object in 3D. It is based on the 

reconstruction of an image volume from a series of 2D projections taken over a range of angles. 

CAT/CT 'scans' in medical/clinical imaging are perhaps the best known examples of tomography. 

In these techniques an x-ray beam and detector are rotated 360° around the patient to collect a series 

of projection images taken at incremental angles. These are then automatically computed to yield a 

3D image volume (Figure 1.5) displaying the patient's internal organs at different densities (often 

assisted by an image contrast enhancing agent).  

 

 

Figure 1.5 Generation of a 3D volume from a tilt-series. 

(A) A specimen or detector is rotates incrementally around one axis to produce a series of 2D density maps to yield a tilt-series. (B) 

The final 3D density map (the tomogram) is created by back-projecting (in silico) the 2D images. This figure was modified from Fig 

1 (Baumeister et al., 1999). 

 

The tomographic reconstruction process involves acquiring and then aligning a tilt-series. 

Specifically, a set of 2D images are collected over a large angular range at regular, small angular 

increments around a single axis of rotation relative to the object. After alignment, these 2D images 

are then back-projected in Fourier space using Radon transform (Radon, 1917) to compute a 3D 

density distribution, called a tomogram. Figure 1.6 shows that CAT/CT, TEM for ET (B) and 

single particle analysis (SPA) (C) use similar arrangement of the source detector to compute 3D 

reconstructions. The specimen of SPA is not normally tilted where different views are obtained 

from the random orientation of ‘identical’ particles dispersed on a specimen grid.   
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Figure 1.6 Three popular data collection techniques used in 3D image reconstruction. 

(A) CAT scans rely on the patient being stationary and a rigid source-detector being tilted by equal increments around the patient; 

(B) equivalent single-axis tilt geometry in the TEM for ET, where the source-detector arrangement remains stationary while the 

specimen is tilted by angular increments; (C) as in (B), but instead of tilting the random orientation of large numbers of identical 

particles (i.e. macromolecules) derived from each 2D projection image provides the information used to compute the 3D structure of 

the original specimen. Adapted from (Frank, 1992). 

 

1.2.2 Resolution gap in 3D imaging of ET 

Electron microscopy (EM) tomography is a general method for tomographic 3D reconstruction of a 

microscopic object imaged with a specialised transmission electron microscope (TEM). The term 

‘cellular tomography’ is used when this method is applied to cells. ET has become a powerful tool 

not only for the 3D visualisation of internal cell structure, organelles and macromolecular 

complexes but also fills a critical gap in the 3D imaging spectrum between light microscopy (LM) 

and SPA techniques (Figure 1.7). SPA is a technique used to image and model the 3D structure of 

macromolecules. Generally, SPA is well suited to studying the structure of macromolecules which 

are too large to permit structural analysis by nuclear magnetic resonance (NMR) or for which no 

crystals are available for electron or X-ray crystallography. However, aside from some overlap in 

image processing techniques, the methods used for SPA are not relevant to this project and will not 

be discussed further.  

 

ET has proven capable of providing valuable structure-function information. Although a high 

relative cost is needed for maintaining ET instrumentation, advances in data acquisition, software 

for reconstruction and analysis, have helped ET to become the prime method for understanding 

relationships between organelles in the case of mammalian cells (Perkins et al., 1997) as well as 

whole cells in the case of simple eukaryotes and prokaryotes (Baumeister, 2005).  
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Figure 1.7 Schematic diagram comparing the resolution of various imaging technologies and the objects that they can 

resolve. 
Top row, left to right: lipids, proteins, whole virus, organelles, whole cells and various size organisms. This image was reproduced 

from Fig 1 in (Subramaniam, 2005). 

 

In practice, the main limitation of ET is the specimen size – limited by the field of view of the 

microscope as well as the specimen thickness that the electron beam is able to penetrate (typically 

up to 300 nm, beyond which point there is a rapid falloff in signal-to-noise ratio). The resolution 

achieved by ET is limited by thickness, as well as radiation damage and signal-to-noise 

dependency, however, it is generally agreed that ~4 nm resolution is routinely achievable from the 

majority of specimens (Grünewald et al., 2003, McEwen and Marko, 2001, O'Toole et al., 1999, 

Baumeister et al., 1999, Baumeister, 2002). A monograph on ET is also available (Frank, 1992). 

  

1.2.3 Data collection: From specimen to tilt-series and tomograms 

Data collection for ET involves a few basic steps including 1) placing a small biological specimen 

on a thin (~80 nm) layer of transparent plastic support film in a small (~3mm diameter) disc-like 

‘grid’, 2) loading the grids into an electron microscope and tilt-rotating a specimen holder, which 

allows maximum tilt range of ±60-70
o 

, 3) completing data collection, 4) rotating the specimen 

around the Z axis to facilitate data acquisition around a second axis orthogonal to the first (dual-axis 

tomography). 

 

The tilt/angular range and the tilt increment are reported to be important factors affecting the final 

quality of the tomographic reconstruction. Because the biological specimen is tilted in the column 

of the microscope while the electron beam remains stationary (due to practical hardware 
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considerations), tomograms in ET suffer from a restricted angular range of ±60-70
o 

which results in 

an effect known as the ‘missing wedge’, whereby anisotropic distortion exists in the tomogram in 

the direction of the beam, as illustrated in Figure 1.8. 

 

 

Figure 1.8 Quality of back-projection as a function of tilt increment and range. 

Four 2D images demonstrate the effect of a tilt range and increment size on tomogram quality. These images were reprojected from 

the same image using a series of 1D slice. (A) ±90º range with 2º increments, (B) ±60º range with 2º increments, (C) ±90º range with 

5º increments and (D) ±60º range with 5º increments. Reproduced from Fig 1 in (Baumeister et al., 1999).   

 

Because the total angular range is limited due to the hardware configuration of standard TEMs (e.g. 

to ±70° from horizontal), the data set is corrupted by anisotropic distortion. Typically, this is 

minimised by collecting a second series of projections after the EM grid supporting the specimen 

has been rotated 90° around the Z-axis (Mastronarde, 1997) and this is commonly called dual-axis 

tomography (Figure 1.9). This technique substantially improves image quality and reduces the 

missing wedge to a ‘missing pyramid’, and the result is improved symmetry and isotropy in all 

three dimensions (Mastronarde, 1997).  
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Figure 1.9 Dual-axis tomography improves reconstruction quality. 

(A) From a 2D specimen, a series of simulated 1D projections are calculated to form a reconstruction (C). (B) The same specimen is 

rotated 90° to produce a second series of reconstructions (D). (E) A combined tomogram with fewer artefacts is formed by averaging 

(C) and (D) effectively. The tilt range for both axes in this simulation was ±60° using 1.5° increments. Modified from Fig 1 (Marsh, 

2005).      

 

1.2.4 Cryo-EM of frozen-hydrated cells versus EM of fast-frozen/freeze-substituted cells 

embedded in plastic sections and the limitations in the EM 

EM imaging of frozen hydrated specimen sample slices, directly cut from vitrified cells/tissues, just 

prior to imaging, uses a low electron dose to minimise the damage to the specimen. The definition 

here pertains to cryo-EM of cellular sections for the purpose of cellular ET. The combination of 

cryo-preservation and low dose imaging improves the resolved cellular ultrastructure in a near-

native-state. However this technique is used routinely for smaller specimens, e.g. viruses and these 

specimens are small enough to be captured in their entirety. Therefore sectioning is not required. 

Low signal-to-noise ratio (SNR) images, as a result from low dose rates are required to prevent 

excessive radiation damage, making it difficult to see cell substructures. As a consequence, this 

results in significant technical challenges both at the level of sample handling and image processing 

(Al-Amoudi et al., 2004).  

To improve SNR and sample robustness as well as allowing images to be captured in normal 

condition, rapidly-frozen cells or tissue can be further processed. Such processing steps include: 

1) The fixation of frozen specimens with chemical cross-linking agents. 
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2) Fixation with heavy metals and the substitution of water molecules with, for example, 

uranyl acetate at low temperatures (typically -90°C) by the process of ‘freeze-substitution’. 

Not only does this fast-frozen substituted cell deliver samples with high membrane and 

filament contrast similar to that obtained by conventional EM preparative methods, but also 

provides the rapid cryo-immobilisation of all processes in the cell. Freeze substitution 

therefore improves the SNR and offers an acceptable trade off between improved contrast 

and ultrastructural preservation (McDonald and Morphew, 1993) and is therefore used in the 

work described in this thesis. 

  

After freeze substitution, cells or islets are embedded in monomeric liquid resin, such as Epon 

(Craig et al., 1962) to produce a polymeric solid. As a result, about 400 nm thick cell sections can 

be successfully cut and imaged by using modern intermediate voltage EMs operating at around 300 

kV. The consequence of electron absorption by the section results in thicker sections having a vastly 

decreased transparency to the electron beam. The effect is exacerbated at high tilt, as the electron 

path through the section doubles when the section is tilted ±60° and triples ±70° (McEwen and 

Marko, 2001).  

 

‘Specimen collapse’ and ‘specimen thinning’ are two significant limitations resulting in two 

problems, a compression of specimen thickness by 25% in the Z axis (Kremer et al., 1990, Luther, 

2005) and additional loss of specimen thickness by up to 4% respectively. In the case of ‘specimen 

collapse’, this occurs within the first few seconds of exposure while ‘specimen thinning’ occurs 

over the time course of collecting a tilt-series.   

 

Specimen collapse has been estimated at 40% in the Z axis for Epon-embedded samples imaged at 

300-1000keV. Computationally, this can be dealt with by stretching the image (the computed 

tomogram/3D volume) by 1.7x (Luther, 1992, Luther et al., 1988, McIntosh et al., 2005). Various 

strategies have been used to deal with ‘specimen thinning’ during data collection, where 1) the 

specimen is ‘pre-irradiated’ at low magnification and dose so that the changes across the entire 

specimen for tomography are more uniform, 2) the specimen exposure is minimised (as much as 

possible). Ultimately it is most important that the distance between objects and surfaces in Z reflect 

their correct spatial relationship. To compensate for collapse of the specimen, the final 3D 

tomogram is rescaled in Z after imaging in the electron microscope, and thus to obtain accurate 

spatial information from cellular tomograms, additional techniques for measuring and accounting 

for section distortion are needed, (Marsh and Howell, 2002).  



 CHAPTER 1-GENERAL INTRODUCTION  

17 

 

 

1.2.5 Image resolution and tilt-series alignment 

Currently, the best image resolution that can be achieved using EM of resin-embedded sections is 

approximately 5 nm, using the latest charge-coupled device (CCD) camera technology at 23,000× 

magnification (with a pixel of ~ 1.4 nm). This is thus referred to as ‘high resolution’ tomography 

(Marsh and Howell, 2002).  

 

A key step in ET is the alignment of the tilt-series. Two methods can be used to define the 

alignment: marker or fiducial alignment and cross-correlation function or marker-free alignment 

(Brandt et al., 2001; Liu et al., 1995; Owen and Landis, 1996; Taylor et al., 1997). The vast 

majority of tomographic data alignment is performed using marker alignment (Penczek et al., 

1995). Colloidal gold particles of a nominal diameter (e.g. 10 nm) are typically used. A basic 

alignment procedure consists of three main steps, 1) gold particles are non-specifically deposited on 

both surfaces of each section, 2) within the tilt-series images, manually select a subset of these gold 

‘fiducials’ using in silico methods 3) semi-automatic methods are then used to track the path of the 

fiducials over each image through the tilt-series. Tracking is particularly beneficial to help with 

computing non-uniform deformation, as it allows more accurate alignment of tilt-series.  

 

A modification of this procedure is known as ‘local alignment’. This procedure can be further 

employed on larger cellular areas in order to correct the heterogeneous distortion without significant 

loss of resolution (Marsh et al., 2004). Generally, a better tomogram quality is achieved by fiducial 

alignment compared to cross-correlation (marker-free) alignment methods. The number, spread and 

accuracy of the fiducials tracked are the main factors in determining the final tomogram quality. It 

is reported that tracking approximately 100 fiducials on each surface (top and bottom of the section) 

ensures the best possible quality (Marsh et al., 2001a).  

 

1.2.6 Segmentation: manual, semi-automated and automated 

Tomograms are usually stored and viewed as a series of computer generated, pixel-thick 2D ‘slices’ 

along the Z axis. Due to the inherently noisy nature of cellular tomograms, direct interpretation 

and/or visualisation of the tomograms is generally uninformative. Instead image processing steps 

help to visualise important cellular features, allowing for further interpretation and analysis such as 

volumetric analysis following segmentation (either manually, or semi-automatically).  
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Others have reported that high-fidelity segmentation can be performed by manual tracing. To 

accomplish this, biologists need to manually trace lines or ‘contours’ of compartments and 

membranes on every single slice of the Z stack. Manual segmentation is very time consuming, but 

yield contours that closely resemble the actual image.  

 

To date, automated segmentation of whole tomograms has produced largely unsatisfactory results 

(Marsh et al., 2004) although the processing time for segmentation is significantly reduced. A few 

automated computational segmentation methods have demonstrated acceptable contouring of ET, 

albeit with some limitations (Narasimha et al., 2008). A survey was conducted – forming the initial 

part of this research work – to assess the performance of existing semi-automated segmentation 

algorithms, and to determine the parameters controlling accurate segmentation of different 

organelles of interest. To accomplish the objective of identifying the best algorithms and parameter, 

results were compared to manually segmented reference sets. Contours were then automatically 

connected to generate a final 3D surface-rendered model of the sub-cellular entities (Figure 1.10).  

 

 

Figure 1.10 Manual segmentation of 2D slice of tomograms and rendered models for 3D surface visualisation. 

(A) An XY single slice of tomogram is segmented by manually tracing (drawing) the lines on organelle’s membrane contour. The 

process is done on every slice of tomogram. (B) A 3D triangular mesh model is produced by connecting the contour lines from (A). 

Adapted from (Noske, 2010).  
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1.3 Background Study: Computational methods of Image Processing 

for ET 

 

1.3.1 Introduction 

Creating 3D geometrical representations of compartments of interest from cellular tomograms is 

vital for both quantitative analysis and detailed visualisation. Due to the background noise present 

in ET and the nature of the data, the majority of segmentation has historically been performed 

manually (Frey et al., 2006). Contours are manually traced through successive Z slices by the 

expert, and are then meshed computationally to form a geometric surface. Organelles of interest 

may occupy up to thousands of image slices in Z.  

 

The detailed 3D segmentation of ~1% of an insulin-secreting HIT-T15 cell (Marsh et al., 2001a) 

required an estimated 3600 person-hours of image analysis. Clearly a more efficient solution is 

required. Apart from the time required, the impacts of human error can be significant. Furthermore, 

most artefacts introduced by human error only become apparent after the surface has been meshed. 

As each Z slice is traced individually, even small errors manifest as ridges and shifts in the final 

surface that can alter an object's surface area dramatically.  

 

Consequently, semi-automated interactive segmentation tools have been developed (Noske et al., 

2008). Rather than attempting to interpret the volume data directly, these tools expedite the manual 

contouring process by further harnessing the expert knowledge of the operator. At the contour level, 

the 'DrawingTools' plug-in of the IMOD software package (Kremer et al., 1996) has extended the 

manual tracing capabilities beyond simple point editing, through incorporation of tools that allows 

contours to be manipulated quickly as curves. This allows direct warping and sculpting of the 

contours using tools similar to those used routinely in commercial illustration software packages 

such as Adobe’s Creative Suite. 

 

Noske’s 'Interpolator' plug-in for IMOD simplifies the segmentation procedure for a variety of 

shaped objects. For example, in video compression where key frames mark points of dramatic 

change, likewise Interpolator allows an object to be marked-up based on the user defining key 

contours at points where an object's shape changes. These serve to guide and refine subsequent 

iterative rounds of automated interpolation between these key contours until an object has been 
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accurately segmented. While this has less utility for application to highly convoluted organelles, 

most compartments of interest possess some semi-regular structural features that benefit 

substantially from this hybrid approach. Secretory granules and other vesicles commonly present 

like distorted spheres and hence can be segmented using a handful of user-drawn key contours to 

guide the generation of interpolated contours, rather than requiring upwards of 50-100 individually 

traced contours. An example of a simple structure is a lysosome, which can be marked up rapidly 

with simple smooth interpolation. This semi-automated interpolation technique not only 

exponentially reduces tracing time (Noske et al., 2008), but also minimises user-drawn error such as 

the ridging effect described above. Nevertheless, interpolation is actually an expedited version of 

manual tracing.   

 

To complement and extend such interactive approaches for improved segmentation, the main 

objective of this project is to focus and enhance semi and/or fully automated segmentation 

approaches. Automated segmentation algorithms have already proven their efficiency in 

segmentation of natural scenes, medical tomography images, biometrics and synthetic data. This 

project aims to assess the most appropriate techniques for application to 3D cellular reconstructions 

generated by ET.  

 

1.3.2 Image filter: Noise reduction algorithms 

Image noise typically refers to the ‘interference’ in an image. It varies qualitatively and 

quantitatively and its severity depends on specimen preparation and incidental imaging conditions. 

Heavy metal staining during resin infiltration is the most unpredictable step. This may be caused by 

the use of same reagents on virtually identical specimens which can result in different degrees of 

stain density (McIntosh et al., 2005). Additionally irrespective of human error, both quantum noise 

in the electron beam and noise accrued during imaging are combined. This is particularly the case 

for the majority of current cameras which use phosphor scintillators to ‘convert’ electrons into 

photons for capture by regular charge-coupled device (CCD) cameras. Unlike other related 3D EM 

techniques, cells, do not contain repeating, identical substructures that can be averaged to improve 

signal-to-noise ratio (SNR) and so ET images cannot be processed using crystallographic or single 

particle averaging methods, with few exceptions; examples include infecting viruses of certain 

types (ones with icosahedral geometry), as well as clathrin and a few other cellular machines e.g. 

bacterial secretion systems.  
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Since this project is focused on semi-automated segmentation, it is necessary to first enhance the 

signal to noise ratios of images of 2D slices of the final 3D tomogram. To do this, it is necessary to 

employ noise reduction algorithms. Studies analysing the suitability of existing image filters for 2D 

and 3D ET image datasets are performed. The understanding of these comparable filters could be 

achieved by grouping them according to their primary criteria. Existing noise reduction filters can 

in this way be divided into two primary groups; classical and complex filters. Complex filters can 

be further arranged into three subgroups, based on the specific developmental principle. The 

principle, application, performance level, data output, advantages and disadvantages of application 

on the ET will be discussed below.  

 

1.3.2.1 Classical noise reduction filters  

The most basic filtering operation is known as ‘low-pass’ filtering which is also called a ‘blurring or 

‘smoothing’ filter. The main purpose of these filters is to remove high-frequency (impulse) noise by 

averaging out rapid changes in intensity. Along with high-pass (removes low frequency 

information), band-pass (removes high and low frequency information, retaining a "band" of 

frequency space information in the middle) and other related filters, it remains a cornerstone of 

signal processing. Unfortunately, the low-pass filter does not discriminate between noise and valid 

high-frequency information, thus resulting in more of a ‘blurring’ effect rather than true noise 

dampening.  

 

Kernel filters improve results over low-pass filters by using a matrix to weight the averaging of 

pixels/voxels based on proximity. Gaussian filter (Canny and John, 1986, Aurich and Weule, 1995) 

is one of the most popular and effective method particularly for enhancing the edge detection using 

a discretised Gaussian function to calculate the weighting across a kernel of a suitable size. The 

application of basic Gaussian filter is conceived to be promising for ET images based on its 

established performance – where the method has demonstrated its efficiency improving the 

detection of (targeted) edges prior to contour segmentation; e.g. an important component in bilateral 

filter (Pantelic et al., 2007). Gaussian filter plugin from ImageJ software was used for this 

experiment.    
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1.3.2.2 Complex filters 

Complex filters maintain the main function of classical image filters (smoothing and blurring) but 

are designed to additionally enhance the edge/membrane of the cellular compartments in ET. 

Implemented with ‘special role/s’ in algorithms, ideally noise reduction filters designed for electron 

tomography should operate as an 'edge and corner preserving smoother' (ECPS) (Papari et al., 

2007). Such filters have important and specific roles in a large number of image processing 

applications, ranging from enhancing photographic images to the rapid and more accurate analysis 

of microarray data. As they execute distinctive roles, the algorithms involved are more refined and 

complex compared to classical filters.  

 

ECPS filters such as the median (Pratt, 1978), bilateral (Tomasi and Manduchi, 1998) and 

diffusion-based filters (Perona and Malik, 1990) have demonstrated effectiveness in ET. While 

other filtering methods, including the use of connected morphological operators (Heijmans, 1999, 

Meijster and Wilkinson, 2002), mean shift (Comaniciu and Meer, 1999) and nonlinear total 

variation (Rudin et al., 1992), unfortunately have limited usefulness in denoising ET images for a 

variety of reasons, but particularly due to the heavy noise contamination of ET images. ECPS filters 

can be further sub-classified into three main groups 1) rank filters, 2) diffusion-based methods and, 

3) bilateral filtering below.     

 

1.3.2.3 Rank filters 

Similar to kernel filters (as discussed in 1.3.1.1) in terms of processing, rank filters use an odd-sized 

window in 2D or 3D centred on the region of interest (ROI) that progressively passes through the 

2D image or 3D volume in XY or XYZ, respectively. However, in terms of its specific weighting 

calculation, unlike kernel filters, rank filters sort the values in the neighbourhood based on intensity 

and weight (calculate) based on these intensity values.  

 

Minimum, maximum and median filters 

The simplest examples of rank filtering are minimum and maximum filtering. The intensity values 

of neighbourhood around each image pixel are sorted and weighted (calculated). In these examples, 

the smallest intensity (minimum) and greatest intensity (maximum) values from neighbourhood 

pixels were used and stored as the corresponding resulting value. Finally, each pixel in the image is 

replaced by the resulting value generated for its associated neighbourhood. These transforms have a 

crude darkening and lightening effect on the image respectively, so despite being not appropriate 
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for denoising large image volumes, they are potentially useful for localised areas. The minimum 

and maximum filter plugins from ImageJ software were used for this experiment. 

 

Unlike minimum and maximum that directly take and store the smallest or greatest intensity value 

from pixel’s neighbourhood, median filter and mean filter need some calculation. Median filter is 

the most commonly applied rank filter used in ET (van der Heide et al., 2007, Arias-Castro and 

Donoho, 2009). Here, the focal voxel is replaced by median value taken from the ranked list of 

values adjacent to (and within the) neighbourhood of the focal voxel. It effectively eliminates 

impulse noise by ignoring outlying values. In addition, if a smaller window is used, voxels take on a 

density similar to their most prominent immediate neighbours, which improve edge gradients that 

define e.g. membranes, as well as the coherence of densely stained compartments. As the median is 

chosen from the ranked list, the resulting value will be identical to at least one neighbour, avoiding 

arbitrary values potentially introduced by impulse noise.  

 

Median filtering was originally suggested in its one-dimensional form and improved to two-

dimensional image processing (Russ, 2002). In three-dimensions, median filtering is performed by 

letting a three-dimensional (3D) window move over voxels in a volume. The value at the window 

centre is replaced by the median (value). Improved results of processed images obtained from the 

application of 3D median filter on tomographic reconstruction – demonstrated with iterative 3D 

median filtering in (van der Heide et al., 2007). The 2D Median filter plugin from ImageJ software 

and the 3D Median filter from CoAn software were used for this experiment.  

 

Compared to other ECPS or complex filters, rank filtering is computationally efficient, with modest 

memory requirements. However, as the window size is increased, the number of values to be sorted 

increases exponentially, introducing a bottleneck even with the most efficient quicksort-based 

algorithms (theoretically O(n log n) before parallelisation) (van der Heide et al., 2007, Volkmann et 

al., 2000). Additional problems are introduced with increased window size, most notably structures 

smaller than half the neighbourhood are likely to be eliminated completely. 

 

Due to its speed, reliability and the fact no significant parameters require adjustment other than the 

window size, the median filter has historically been preferred by our lab for noise reduction of 

cellular tomograms throughout work undertaken as part of a long-standing collaboration with 

A/Prof. Niels Volkmann at the Sanford-Burnham Medical Research Institute in the USA. When 

applied iteratively, the median filter has been shown to achieve comparable results to those 
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typically attained using much more sophisticated filters (Figure 1.11) which generally require 

substantial parameter optimisation, sometimes even out-performing them yet using only a fraction 

of the computational resources (van der Heide et al., 2007). For example, the 3D median filter 

requires computer memory to be allocated equivalent to approximately twice as many Z slices as 

the size of the window. In comparison, the nonlinear anisotropic diffusion (NAD) filter (described 

below) requires around 36 times the total number of voxels in the volume and adjustment of at least 

two parameters, both of which are difficult to predict a priori (van der Heide et al., 2007). 

 

 

Figure 1.11 Comparison of different noise reduction algorithms applied to tomographic data. 

(A and F) Detail from original slice through tomographic reconstruction of ice-embedded actin filaments and original slice through 

tomographic reconstruction of pancreatic beta cell showing a mitochondrium and surroundings, respectively. (B and G) Result of 

med3 filtering (van der Heide et al., 2007). Note the clear appearance and delineation of the actin monomers close to the center of the 

figure (B) and noise is significantly removed while the edges are largely intact (G). (C–E and H-J) Results of (C and H) progressive 

switch median filtering (Zhou and Zhang, 1999), (D and I) non-linear anisotropic diffusion (Heymann and Belnap, 2006), and (E and 

J) bilateral filtering (Tang et al., 2007) for comparison. Note that no attempt at parameter optimisation for any of the algorithms was 

made. Only the settings recommended in the respective papers were used. (van der Heide et al., 2007) Figure 6. 

  

Extended mean filter (Meanshift filter and Kuwahara filter) 

Meanshift filter is the latest application of mean filter and the Kuwahara filter (Kuwahara et al., 

1976) have shown its efficiency on ET images (Bilbao-Castro et al., 2010). Kuwahara filter behaves 

as an extension of the mean filter, where a larger window is initially used and then divided along its 

midlines into a number of smaller areas. Each of these smaller windows is individually averaged 

and then the variance of intensity values is calculated. The resulting value (output pixel) is the mean 

of the sub-window with the smallest variance. This technique strongly improves low-frequency 

information such as edges and coherence, but like the mean filter, tends to introduce an overall 

blurring effect as a result of filtering across borders, since it makes no distinction between high-

frequency data and impulse noise. However, an improved variant of the generalised Kuwahara filter 
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developed by (Bakker et al., 1999) combines orientation adaptive filtering and edge preserving 

filtering to avoid this problem. This approach has been reported to preserve edges and improve the 

SNR. Generalised Kuwahara filter that combines orientation adaptive filtering and edge filtering 

was implemented to avoid problems such as overall blurring effect (Bakker et al., 1999). Both 

Meanshift and Kuwahara filters plugins from ImageJ software were used for this experiment. 

 

1.3.2.4 Diffusion-based methods 

The term ‘diffusion’ in image processing is analogous to physical diffusion events, such as 

molecular diffusion through Brownian motion and heat conduction. In image processing, diffusion 

moves the grey value of an image from higher grey concentration to areas with lower grey value, 

with the aim of preserving object edges while smoothing the regions in between, as the edges are 

the information-carrying features. 

 

Since blurring is the typical property of linear diffusion, (Perona and Malik, 1990) suggested a 

modification of the diffusion flux by minimising or blocking diffusion across edges in order to 

detect and preserve edges. Unfortunately, however, this fails to address one of the key goals of 

image pre-processing for this project, i.e. the thinning and linking of the broken edges of an object, 

as the property of conventional scale space is highly preserved. Therefore, this method is not 

applicable for ET images that exhibit a high level of noise, where the noise degrades the edge 

signal.  

 

Broken edges and/or a degraded edge signal remain a common problem in image processing 

generally and particularly for ET data. In order to avoid this undesirable property, (Weickert, 1998) 

has appropriately created a new nonlinear and anisotropic diffusion approach, where the partial 

differential equation for anisotropic diffusion has been modified. As such, two different diffusion 

variables are proposed, depending on the structural features in the images (Weickert, 1994, 

Weickert, 1998, Weickert, 1999). The first method is called edge-enhancing diffusion (EED) and 

the second one is coherence-enhancing diffusion (CED). EED is basically a modified method where 

the Perona-Malik diffusion model (Perona and Malik, 1990) is correctly discretised to improve low 

SNR and enhance edges, while CED is a method with the capacity to connect lines interrupted by 

noise (i.e. broken edges), when the gradient's directionality and 'flow-like' properties can be 

averaged from structural information in the larger volume and its mean orientation calculated to 

close any gaps. 
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Although the performance of these diffusion methods was originally shown to produce successful 

results for 2D applications (Perona and Malik, 1990, Weickert, 1998) and more recently for use 

with 3D images from MRI (Burgeth et al., 2009), so far these have not proven suitable for denoising 

highly corrupted volume data that is typical for EM. Therefore, Frangakis and Hegerl (Frangakis 

and Hegerl, 1999) proposed to take advantage of the combination of methods suggested by 

(Weickert, 1998) by combining both EED and CED to accommodate a larger variety of structural 

features in 3D images with a higher noise level, leading to development of a new method called 

hybrid NAD. 

 

To prove the suitability of this hybrid NAD filter for ET reconstructions, Frangakis and Hegerl 

presented in detail the parameter settings and discretisation stencils from two example test volumes 

(Frangakis and Hegerl, 2001). By combining the advantages of EED and CED, which respectively 

demonstrate good performance at low SNR and a capability to connect lines interrupted by noise, 

this hybrid approach even further improves the capacity for 3D visualisation by iso-surface 

representations or volume rendering to aid in drawing useful biological interpretations from the test 

data. At the time, the results presented in (Frangakis and Hegerl, 1999, Frangakis and Hegerl, 2001) 

demonstrated that NAD was superior to more conventional methods of noise reduction, such as 

low-pass or median filtering.  

 

The effectiveness of hybrid NAD for ET reconstructions of cellular data was further documented in 

a paper by (Fernández and Li, 2003) describing the development of software based on hybrid 

EED/CED, which demonstrated that in addition to reducing local noise, using a hybrid NAD filter 

enhanced the edges of both curvilinear and planar objects resulting in improved delineation of 

object shapes. Hybrid NAD – i.e. where two diffusion tensors are combined; edge-enhancing 

diffusion (EED – used to improve low signal-to-noise ration and enhance edges) and coherence-

enhancing diffusion (CED – used to connect lines interrupted by noise, i.e. broken edges) – was 

implemented in 3D for ET reconstruction segmentation (Fernández and Li, 2003). The NAD filter 

provided in IMOD software was used for this experiment.    

 

1.3.2.5 Bilateral filtering 

Bilateral filtering was first developed by (Tomasi and Manduchi, 1998) as a novel ECPS filter 

designed to be effective both with RGB photographs and grey-scale images, but was later 

demonstrated by (Jiang et al., 2003) to be useful in a wide range of EM applications, including ET 
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and SPA. It was originally designed to be photometrically weighted, to account for the human 

optical colour space, but this aspect is obviously unused in greyscale electron tomograms. 

 

The bilateral filter is essentially a regular low-pass filter, with weighting determined by the 

Gaussian value corresponding to distance from the centre, combined with a modified low-pass filter 

which instead weights based on the variance, or distance in colour/grey space. The values of pixels 

with a similar density to the pixel of interest are weighted more heavily, which results in improved 

preservation of both edges and coherence, especially when used with a large window. Jiang and 

colleagues at the Baylor College of Medicine subsequently incorporated the bilateral filter as a 

standard feature of the EMAN software package. In addition to EMAN, there is also 'Bernard’s 

Software Package' (Bsoft) that provides a bilateral filter (Heymann, 2001, Heymann and Belnap, 

2006). Under extremely low SNR conditions, such as in cryo-specimens or SPA micrographs with 

small particles of interest, the bilateral filter also faces the same limitations of other complex filters; 

the difficulty in distinguishing between high-frequency data and impulse noise. To allow for even 

greater control in such situations, (Pantelic et al., 2006) developed the discriminative bilateral filter 

(DBL), which adds a second photometric function to distinguish between edges and impulse noise. 

As well as each pixel being weighted based on its difference in density to the pixel of interest, each 

pixel is weighted independently relative to its own neighbours and attributed a weight of 0 if density 

differs by more than the given threshold for impulse noise. Bernard’s Software Package (Bsoft) 

provides this type of bilateral filter (Heymann, 2001, Heymann and Belnap, 2006) and was used for 

this experiment. 

1.3.3 Segmentation 

1.3.3.1 Watershed Transform 

The watershed transform is a mathematical morphology-based segmentation algorithm analogous to 

topographic reliefs (Beucher and Meyer, 1993, Hagyard et al., 1996, Vincent and Soille, 1991). In 

the simple 2D greyscale case, elevation is equated with density and the terrain is progressively 

‘flooded’ from each of the minima. As the catchment basins expand, watershed lines are placed 

where they finally touch to segment the image (Volkmann, 2002). The resulting catchment basins 

correspond to homogenous grey areas in the original image. The accuracy of region finding and 

computational efficiency of the transform has been demonstrated by (Hagyard et al., 1996).  

 

Over-segmentation, where one object is broken up into multiple pieces, is a common problem in 

processing ET data, not just via watershed transform but with many different segmentation 
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algorithms, due to e.g. the high noise levels and inconsistent staining. To overcome this problem 

when using the watershed transform, neighbouring basins with similar qualities are merged once the 

flooding is complete. Even after extensive pre-processing to enhance edges and remove noise, it is 

still difficult to strike a balance between over- and under-segmentation. To minimise the need for 

basin merging, an additional ‘step’ parameter in a novel 3D variant of the watershed transform was 

introduced by Niels Volkmann in 2002 (Volkmann, 2002), specifically targeted for use in 

segmenting electron density maps (Figure 1.12). This parameter allows the rate of immersion to be 

specified, allowing finer grain controls over the assignment of watershed lines.  

 

 

Figure 1.12 Schematic diagram illustrating the watershed transform. 

Low elevation shows the objects while background is on high elevation. The image is initially thresholded at a low elevation. Then 

the elevation is raised gradually one step at a time. The boundaries of the objects will expand as the threshold increases. When they 

touch, however, they are not allowed to merge. Thus, the points of first contact become the final boundaries between adjacent 

objects. Step size must be appropriately chosen. Adapted from (Volkmann, 2002). 

 

In practice, determining the ‘step size’ in application of the modified watershed transform to noisy 

ET images of ET is a tedious process. To overcome this problem and increase the power of this 

technique, a preceding denoising step is beneficial.  

 

1.3.3.2 Energy-based techniques (‘snakes’ or ‘active contours’) 

An energy-minimising deformable spline, commonly known as a ‘snake’ or ‘active contour’, is a 

deformable shape that is influenced and guided by image forces and external constraints that pull it 

towards object contours (edges) by using the gradient information as input data. It was originally 

introduced by (Kass et al., 1988) and often used in applications and visual problems such as object 

tracking, motion tracking and segmentation which utilises edge detection and shape recognition. An 

‘active contour model’ is presented as a set of n points that exhibit dynamic behaviour, by locking 

onto the membrane of an object (manually segmented in one Z-slice only), from which the object is 
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then segmented across all Z-slices. The accuracy of segmentation is subsequently improved through 

iterative refinement, up to a point beyond which accuracy is diminished. 

 

In the review of (Nguyen and Ji, 2008) there is an extensive discussion of active contour 

segmentation methods applied to various ET volumes, including reconstructions of: DNA filaments 

(Jacob et al., 2002); chromosomes, segmented by parametric active contours (Babu et al., 2004); 

and subcellular features of HIV-infected macrophages, by geodesic active contours (Bartesaghi et 

al., 2005). Segmentation of cell image data by globally optimal geodesic active contours (Appleton 

and Talbot, 2005) and using the level set method (Sethian, 1999, Bajaj et al., 2003) is also 

compared.  

 

As with the manual process, a rough initial contour (indicating an initialisation curve/contour) is 

drawn and then lets the snake evolve under pre-set parameters, such as the gradient threshold and 

number of iterations. The snakes may also be used with fully automated segmentation, in which 

seed points are calculated at the snake’s initialisation slice and will evolve from there (Bajaj et al., 

2003). A simple example of how the snake functions can be viewed in Figure 1.13; the snake’s 

spline energy term attracts the erroneous contour back to the object’s boundary after several 

iterations.  

 

 

Figure 1.13 Semi-automated image segmentation by the ‘Snakes’ or ‘active contours’ techniques. 

Two edge snakes on a pear and potato. Upper-left: The user has pulled one of the snakes away from the edge of the pear. Others: 

After the user lets go, the snake snaps back to the edge of the pear (Kass et al., 1988). 
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1.3.3.3 Hybrid techniques 

Although the watershed transform (Volkmann, 2002) has been extensively shown to be a powerful 

tool for mathematical morphological segmentation, its use can result in over-segmentation of noisy 

electron tomograms. The snake method, reported to be efficient for segmenting subcellular structure 

(Bajaj et al., 2003), also has a major drawback: the erroneous convergence of edges that may occur 

when true edges are broken, or blurred by noise. To overcome these significant problems, the 

integration between watershed and energy-based segmentation techniques, called ‘watersnake’, was 

developed and tested (Nguyen et al., 2003). It was designed to overcome the problems encountered 

with energy minimisation by using the ‘distance-based definition’ - a concept of topographical 

distance - of the watershed line.  

 

Two significant advantages of watersnake have been identified: improved smoothing results and the 

reduction of unwanted convergence of edges. A comparison between watershed and watersnake 

applied on 2D image and medical datasets is shown in Figure 1.14 and Figure 1.15 respectively. 

 

(A) 

 

(B) 

 
Figure 1.14 Application of Watershed (A) versus Watersnake (B) segmentation to 2D image data. 

The results are shown for the object of interest only (adapted from (Nguyen et al., 2003).  
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 (A) 

 

 
 

(B) 

 

 
 

Figure 1.15 Comparison of Watershed and Watersnake segmentation techniques applied to 2D medical imaging datasets. 

(A) The result of original watershed segmentation. (B) The result of the watersnake algorithm. The result shows that (B) is smoother 

than (A), while still accurately identifying the main objects (adapted from (Nguyen et al., 2003)).  

 

In 2003, Nguyen et al concluded that the efficiency of watersnakes has not yet been proven on the 

ET volumes of biological samples, which often contain relatively complex organelle shapes with 

inconsistent edges and significant noise (Nguyen et al., 2003). However, in a subsequent study 

(Nguyen and Ji, 2008), the authors improved on their original model by incorporating prior 

knowledge of the shape/features of organelles of interest, as well as the mathematical framework 

necessary to adopt it to 3D volumes. Based on this additional information, a powerful method has 

been developed for automatic segmentation of sub-cellular structures with different complexity 

levels. 

 

Another hybrid technique uses a model-based approach to segment reconstructions. Applied to the 

segmentation of kinetochore microtubules (MTs) in PtK cells (McEwen et al., 2005), the automated 

algorithm consists of five steps, including three types of filtration: a median filter, used to remove 

speckle noise so that the subvolume is enhanced; an anisotropic invariant wavelet filter, applied to 

enhance elongated structures; and an eigenvector-based filter for 3D surface-enhancement to detect 

circular contours. The filtration steps are followed by conversion of the model to a binary image, 

with the MT plus-ends then traced in a probabilistic manner.  

 

Jiang et al. further investigated the segmentation of MTs in 3D cellular reconstructions to develop 

an automated extraction process for MT plus-ends (Jiang et al., 2006b, Jiang et al., 2006a). This 

method contains three main steps: 1) volume pre-processing using an anisotropic invariant wavelet 

transform; 2) a 3D tube-enhancing filter and surface-enhancing filter for MT body segmentation 
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employing a modified active contour shape model; 3) MT plus-end tracing, where an improved 

probabilistic tracing method has been applied. Although these techniques were demonstrated to 

accurately segment kinetochore MTs, they have not yet been successfully applied to segment MTs 

in the context of other ET datasets on a broader scale. The approach has been found to be practical 

for microtubules and such morphology (tubelike shape) (Jiang et al., 2006b, Jiang et al., 2006a), and 

has not been selected for this study. 

 

1.3.4 Segmentation of organelles of interest: Studies for sub-cellular compartments 

categorisation 

Accurately tracing (e.g. manual segmentation) through the centre of the membrane bilayer of a 

cellular organelle is not an easy task, especially when the organelle’s exact morphology is unknown 

beforehand and the staining of the membrane may vary in texture and intensity. Factors such as the 

crowded cytoplasm (Grünewald et al., 2003), image noise and distortion may also hinder accurate 

manual segmentation. Much of the previous research in automated ET segmentation has been in the 

development and application of tools for quantitative analysis and interpretations are mainly based 

on ET volumes with low SNR (Frangakis and Forster, 2004, Narasimha et al., 2008, Winkler, 

2007). Sandberg (Sandberg, 2007) has also shown that using orientation information can assist in 

the automatic segmentation of microtubules or other fiber-like structures and that image information 

alone (such as intensity and texture, which are non-uniform along the microtubule) is not sufficient.  

 

Consequently, the shape and complexity of the organelle is perhaps the most significant information 

in obtaining the best segmentation result. In this study, I will show that by categorising the 

complexity (and therefore segmentation difficulty) of each compartment based on its shape (and 

eventually extending to other features such as texture), we will improve the precision of the process 

of segmenting ET volumes. To achieve this aim, I have undertaken a background study that 

summarises the primary morphology and degree of complexity of three significant 

compartments/organelles found in the ET volumes of pancreatic beta cells that I intend to segment 

in the course of our group's biological investigations of beta cell biology: the Golgi apparatus, 

mitochondria and insulin granules. 
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1.3.4.1 The Golgi Apparatus 

The Golgi apparatus is a key organelle found in all eukaryotic cells whose primary function is to 

further modify macromolecules (e.g. lipids, proteins) from the endoplasmic reticulum (ER). This 

processing is particularly important for proteins to achieve their final functionality for a number of 

fundamental cell processes, such as secretion. The Golgi apparatus consists of a number of discrete 

stacks of fenestrated, flattened membranous compartments called cisternae, which are laterally 

inter-connected to form a ribbon-like structure (Marsh et al., 2001a, Marsh and Howell, 2002, 

Noske et al., 2008). In prior ET studies of the beta cell, the Golgi typically consists of 5 to 7 

individual cisternae and is somewhat analogous to a stack of pancakes; this morphology contributes 

to a high surface-to-volume ratio. 

 

The Golgi can be divided into a series of different spatial and functional regions, termed the cis, 

medial-, and trans-cisternae, each distinguished by different enzymes which selectively modify the 

different types of molecules as they progress through these regions along the cis-trans axis. From 

the ER, membrane transport vesicles and tubules carrying newly synthesised proteins fuse with cis-

Golgi cisternae. Their protein cargo then progressively transits across the stack to the trans-Golgi 

cisternae, where proteins are then sorted and packaged for shipment to the required destination 

either within the cell or for release to the extracellular space.  

 

In some cases, tubular connections between non-adjacent (and more rarely, adjacent) cisternae have 

been observed; this, in conjunction with functional stratification of the different regions of the stack, 

mean that the organisation of Golgi cisternae shape can be divided into three levels of 

morphological complexity for the purposes of this study (presented as Case 1, Case 2 and Case 3 in 

Figure 1.16). Each has been simplified as a cartoon image to illustrate more clearly the basic 

morphological/shape complexity variations that exist, as determined by evaluating existing ET 

datasets produced by our group to date.  
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Level of complexity 

 

Case 1 

 

 

 

 

Case 2 

 

Case 3 

 

Each cisterna is an individual ‘pancake’ 

layer, relatively uniform in length, with 

only slight variations in shape and size.  

 

 

The cisternae appear to have differences 

in shape, length and width, but are still 

clearly separated. Some examples of 

variations in shape include a long 

tubular profile, wide/roundish or 

'distended' cisternae and elliptical 

membranes.  

 

Trans- or cis-Golgi often have vesicles 

budding off, but still attached and are 

typically segmented as the same surface 

as the attached cisternae. These shape 

anomalies, as well as variations in 

staining density usually associated with 

these buds, can cause difficulties using a 

smooth segmentation algorithm.   

Figure 1.16 Illustrative schematic images to highlight different levels of shape complexity for the Golgi apparatus with 

respect to segmentation. 

 

1.3.4.2 Mitochondria 

Mitochondria comprising multiple subregions that carry out specialised functions are ultimately 

bound by an outer membrane layer, together with a small inter-membrane space followed by an 

inner membrane layer that is organised into cristae and the matrix (the space within the cristae). 

Mitochondria work as power generators in the cell that supply chemical energy in the form of 

adenosine triphosphate (ATP), necessary to carry out basic cellular activities. They tend to have a 

heavy/dark staining density. Morphologically, this organelle can be quite complex, as they often 

branched and forming irregular shapes presumably due to fission or fusion events determined by the 

energy state/needs of the cell prior to freeze-fixation of the cells.  

 

In this study, I will only consider the gross surface morphology of mitochondria as delineated by 

the outer membrane. For this purpose I have assigned four levels of complexity to the overall 

morphology of mitochondria in beta cells (Figure 1.17). Case 1 is the most simple, with only non-

branched mitochondria, which display a relatively consistent shape from one Z-slice to the next 

(usually tubular or pancake-like) and exist as ‘singular' spatially discrete objects in the cytoplasm 

(meaning that their outer membrane does not contact any other mitochondrion or other 

organelles/compartments). We have also observed, in accordance with other studies, that 

mitochondria can be branched in some regions. Branched mitochondria that remain spatially 

discrete within the cytoplasm constitute the second level of complexity (Case 2). It should be noted 

that it is a subject of debate whether these branched mitochondria should be considered one 

mitochondrion, two mitochondria in the process of fusion (or fission), or three separate 

mitochondria (Chen and Chan, 2005, Frazier et al., 2006, Karbowski and Youle, 2003, Okamoto 
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and Shaw, 2005, Perkins and Frey, 2000). Case 3, is similar to Case 2, but rather than being 

branched, each mitochondrion appears to have two distinct shapes. Case 4, the most difficult to 

segment, exhibits the proximity of other organelles/compartments to our mitochondria of interest. In 

this case, it is hard for computational tools to assign a membrane/edge to the correct organelle, as 

they are similar in density and grey value.  

 

Level of complexity 

 

Case 1 

 

 

 

 

Case 2 

 

 

Case 3 

 

Case 4 

 

Singular and free in 

cytoplasm: e.g. the outer 

membrane is clearly 

separated from that of other 

organelles/compartments and 

significantly denser than the 

surrounding cytoplasm.  

 

 

 

Singular/free in the 

cytoplasm. Branched or 

proximal to a branch. An 

artifact (or limitation) of ET 

is seen as the membrane 

surface curves away from 

being in perfect cross-

section, it becomes less 

distinct (e.g. blurry or 

cloudy) and therefore harder 

to segment.   

Singular/free in the 

cytoplasm. Not necessarily 

branched, but mitochondria 

appear to have two distinct 

shapes (slender shape) 

 

Proximal to, or in (apparent) 

contact with other organelles 

or compartments. 

Figure 1.17 Illustrated images to represent different levels of complexity of mitochondrial ultrastructure. 
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1.3.4.3 Secretory (Insulin) Granules 

Insulin granules are typically spherical and computationally easy to segment if the membrane is 

intact. In beta cells, there are predominantly two types of insulin granules: mature and immature. In 

this study, we have ignored this distinction, limiting our focus to the granule’s general shape, as the 

insulin core is not to be segmented. That being said, the position of the insulin core or crystal 

(relative to the granule membrane) plays a crucial role in determining the level of complexity, 

illustrated in Figure 1.18.  

 

(a) Mature Granules 

Mature granules in beta cells isolated from normal mice have an average diameter of approximately 

300 nm and are roughly spherical in shape. Granules often appear to have an empty lumen with a 

more densely stained insulin core. This staining pattern in combination with an insulin crystal that 

does not come into contact with the granule membrane is the simplest condition for segmentation 

(Case 1). We have also regularly observed a densely stained lumen with a less stained crystalline 

core, which is slightly more difficult to segment (Case 2, when the crystal does not contact the 

membrane). When the insulin crystal contacts (or comes very close to) the membrane, segmentation 

is considerably more difficult, giving us Case 3. In this category, existing segmentation algorithms 

often combine the crystal and membrane into one surface, or even fail to segment the membrane 

altogether and erroneously segment the insulin crystal itself. 

 

(b) Immature Granules 

Immature granules can be either considerably larger or similar in size to mature granules but lack 

the well-defined insulin crystal core; instead, their uncleaved proinsulin cargo can be visualised as 

small punctate stain density of relatively uniform size and distribution within the granule lumen. 

Due to the fact that they appear less dense since the protein has not yet condensed in the granule 

core, immature granules are often called ‘pale granules’ (Rorsman and Renstrom, 2003, Noske et 

al., 2008) in morphological studies due to this difference in stain density and can also exhibit more 

irregular shapes.  
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Level of complexity 

 

Case 1 

 

 

Case 2 

 

Case 3 

 

Case 4 

 

Singular/free in the 

cytoplasm. Throughout the 

reconstruction, empty lumen 

space separates the insulin 

core from the granule 

membrane, allowing for easy 

segmentation. 

Singular/free in the 

cytoplasm. Morphologically 

the same as Case 1, with one 

distinction: the granule 

lumen has varying degrees of 

staining density.  

 

Singular/free in the 

cytoplasm. The insulin 

crystal contacting (or 

appearing to contact) the 

granule membrane. Because 

these often have a similar 

density, segmentation 

algorithms tend to fail, 

irrespectively of the density 

(or lack of density) of the 

remaining lumen.  

Proximal to, or in (apparent) 

contact with other 

organelles/compartments 

 

Figure 1.18 Cartoon images to represent different levels of complexity of granule ultrastructure. 

 

1.4 Thesis Hypothesis 

Dr Brad Marsh and colleagues at the Institute for Molecular Bioscience have extensively studied 

beta cells by ET and have observed significant variation amongst the morphology and shape of cell 

compartments in beta cells. Qualitative observations also show that there are morphological 

differences among membrane bound organelles within beta cells, which proves that each membrane 

bound organelle can undergo significant reorganization of their shape and size in response to 

specific biochemical stimuli, including but not limited to, a decrease in the number of mature 

secretory granules, remodelling of Golgi cisternae and an expansion of the Golgi ribbon, an increase 

in mitochondrial mass, rearrangement of the mitochondrial network to be closer to the Golgi in 

order to provide energy for insulin upregulation, and presumably a decrease in the number of 

autophagic bodies (Noske, 2010). From a purely geometric viewpoint, these events can be 

concluded as being deterministic of subcellular structures that present a range of complexity levels 

in image processing terms. 

 

Until recently, the application of automatic and semi-automatic segmentation algorithms to ET 

datasets has only satisfactorily segmented specific organelles (membrane bound and non-membrane 

bound organelles) when particular/special conditions are implemented, so it has not been possible to 
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automate such segmentation process in the context of a diverse organelle’s shape complexity. These 

observations thus led to the formulation of the primary hypothesis of this PhD project: that a 

particular combination of method flows and parameter settings could be developed and identified, 

to expedite the semi-automated segmentation of different ‘levels of complexity’ (different image 

entities) membrane bound organelles within a beta cell. It was the goal of this PhD project to 

segment key organelles of importance in insulin secretion and ultimately to support the mapping of 

an entire beta cell in 3D using a number of automatic and semi-automatic algorithms in order to 

support or reject the above hypothesis.  

 

1.5 Thesis objectives 

This project is divided into four inter-related aims: 

 

1. To select and categorise key organelles/compartments of interest within large cellular 

tomograms already in hand (previously generated by the Marsh Group at the IMB) into 

subtypes according to ‘complexity’ in terms of computerised image segmentation (using 

numbers of significant image entities) with the aim to provide a range of representative 

sub-classified organelles of interest. 

 

2. To provide schematic diagrams for highlighting the distinguishing features for each 

category. Based on these schematics, tomogram sub-volumes will then be extracted from 

the pre-existing tomograms of pancreatic beta cells to test and evaluate a variety of 

different mathematical approaches for image segmentation.  

 

3. To survey the major image processing methods which have already demonstrated at least 

some level of success for accurately segmenting EM/ET images, as well as algorithms 

employed for segmenting other types of tomographic image volumes produced by 

CT/CAT and MRI. These algorithms are methodically applied to the extracted sub-

volumes in various combinations and trialling a range of parameters, with the aim to 

identify the best suited methods for a reliable segmentation for ET images based on their 

performance in terms of accuracy and ability to deal with increasingly complex cases. 

   

4. To examine and analyse the segmentation results comparatively and objectively based 

on the comparison with manual tracing. The results of the successful combination 
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methods and its settings will be recorded to enable the segmentation process with 

minimal user interaction.  

 

1.6 Thesis structure 

The remainder of this thesis is organised as follows. Chapter 2 outlines the general methods used 

to prepare and reconstruct the ET images of the beta cells and covers the whole segmentation 

process including noise dampening and automatic segmentation. Chapter 3 evaluates the proposed 

methods to identify the optimal sets of parameters of combination segmentation methods by 

comparing the outcomes to those produced by manual segmentation. Chapter 4 outlines a number 

of image classes according to organelles characteristics to assist in identifying the optimal 

parameters for each organelle type. Chapter 5 evaluates and discusses a recently developed 

"parameter-free" segmentation method, 3-Dimensional Bilateral Edge detection (3D BLE) in the 

context of our datasets. It then discusses in more detail the script development and application of 

tools for multiple sub-volume extractions and their importance for expediting whole semi-

automated cellular segmentation. Chapter 6 discusses both technical and biological outcomes from 

this project in the context of future directions, and concludes the thesis with a summary of major 

findings and important future applications of these approaches for rapidly and accurately classifying 

and analysing sub-cellular compartments for high throughput ET of cells under different conditions.   
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Chapter 2 MATERIALS AND METHODS 
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2.1 Pancreatic islet/cell preparation 

 

2.1.1 Mouse islet isolation culture 

Intact islets of Langerhans were obtained from the pancreata of freshly euthanized adult female 

BALB/c mice. Islets were isolated with collagenase (Sigma type V, lot tested; Sigma Chemical Co., 

St. Louis, MO, USA), and were purified with a Histopaque-1119 density gradient (Sigma) (Marsh 

et al., 2004, Gotoh et al., 1985, Nicolls et al., 2002). Islets were hand-picked and then cultured in 

RPMI medium 1640 containing 10% (vol/vol) heat inactivated calf serum (NCS) or foetal bovine 

serum (FBS) and 7 mM D-glucose equilibrated with 5% CO2 at 37°C. The medium was 

supplemented with 100 U/ml penicillin/100 µg/ml streptomycin/L-glutamine/2-mercaptoethanol. 

The islets were cultured for 2-3 h for tissue recovery and to promote re-initiation of protein 

synthesis, and transferred to RPMI medium containing low glucose (3 mM) and cultured overnight 

(~12-18 h). The islets were removed for immediate high-pressure freezing (HPF). Islets were not 

cultured or used beyond 48 h. 

 

2.1.2 High-pressure freezing and freeze substitution 

Islet cultures were maintained at 37°C in HEPES-buffered (10 mM) RPMI medium (Sigma), 

containing either NCS or FBS 10% (vol/vol) (Invitrogen Australia Pty Ltd), prior to freezing. 

Immediately prior to freezing, 10-30 islets (depending on size) were manually transferred by pipette 

under a dissecting microscope (Olympus Australia Pty Ltd) into brass, HPF interlocking hats (Swiss 

Precision Inc., CA, USA). Islets were rapidly frozen under high pressure (~2,100 atm/~2,000 bar) 

using a Balzers HPM 010 high-pressure freezer (Leica Microsystems) to ensure vitrification of 

water and therefore minimal tissue damage, and then stored in liquid nitrogen until freeze-

substituted and resin-embedded as described previously in (Marsh et al., 2001a). 
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2.2 Cell section tomography 

 

2.2.1 Microtomy and preparation for ET 

Thin (40-60 nm) or thick (300-400 nm) sections were cut using a Diatom diamond knife on a Leica 

UltraCut (-UC6) ultramicrotome, and collected onto Formvar-coated copper (2×1 mm) slot grids 

(Gilder, http://www/gildergrids.co.uk). Sections were post-stained with 2% aqueous uranyl acetate 

and Reynold’s lead citrate. Grids with thick sections (for ET) were then coated with 5, 10 or 15 nm 

colloidal gold particles on both surfaces, and typically an additional carbon-coating step was 

required to minimize sample charging/movement in the electron beam, particularly when tilted for 

tomography (Marsh, 2005, Marsh, 2007). Conventional 2D TEM surveys of thin sections were 

conducted on a Tecnai T12 (FEI Company) operating at 120 kV, or a JEOL 1011 TEM (JEOL), 

operating at 80 kV. Electron tomography data of thick sections was collected on an FEI Tecnai F30 

FEG-TEM operating at 300 kV. 

 

Slot grids or open aperture grids are ideal for ET because they afford the maximum possible 

unobstructed viewing area when the specimen is tilted beyond 60° in the electron microscope. 

Ribbons of serial sections are essentially laid down the length of the grid parallel to the log axis of 

the slot and tomographic ‘tilt series’ are collected around two orthogonal axes. The gold particles 

are for use as fiducial markers during subsequent image alignment (Marsh et al., 2001a). On a small 

subset of these sections, gold particles of 10 nm diameter were used for purposes of quality 

comparison and the goal of later re-imaging some of these sections at high magnification. 

 

2.2.2 Surveying the section to find candidate cells: whole islet montages at 4700× 

The procedures used for surveying sections to find candidate cells have been described in detail in 

(Noske, 2010). Briefly, each section was ‘pre-irradiated’ at low magnification (140×) for 10 min at 

300 kV, with the electron beam spread wide and using a high spot size, to uniformly collapse a 

large area of the section/sample. Islets were then imaged at 4700× magnification using the stage-

shift montage function of SerialEM. Cells were then selected from the montage images for whole 

cell tomography.  
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2.2.3 Tilt series acquisition 

To reduce non-anisotropic specimen thinning during tilt series acquisition, the cell section was pre-

irradiated for 10 min at +60° and 10 min at -60°. The process was performed immediately prior to 

each tilt series acquisition using the same microscope settings used for pre-irradiation at 0°. The 

combined 4700× montage images were used as a reference image to help find, rotate and position 

the target cell in the centre of the TEM imaging area. As the sections were serially tilted using the 

microscope control program SerialEM (Mastronarde, 2003, Mastronarde, 2005), tilt series data 

were digitally recorded using semi-automated methods for CCD image montaging, data acquisition 

and image alignment. The cell was slightly too large to fit in cross-section at 4700×, but rather than 

reduce magnification, tilt series were beam shifted to create a 1×2 montage on the middle-most 

sections of the cell, where they would not otherwise fit in the image. The cell was imaged at 4700× 

magnification (pixel size = 5.058 nm) by tilting at 1.5° increments over a range of ±63°. The 

process of collecting the tilt series took approximately 3 weeks.   

 

2.2.4 Reconstruction and joining of sections into a whole cell tomogram 

Tilt series images (2K×2K) were first brought into register with one another by cross-correlation 

using the IMOD software package which incorporated two graphical user interfaces (GUI);  eTomo 

and 3dmod (Kremer et al., 1996). To improve the tomogram quality, ~120 gold fiducial markers 

(most of which were 15 nm diameter) were tracked across the A axis tilt series and the same 

fiducials tracked across the B axis tilt series for each section. As described in (Ladinsky et al., 1999, 

Marsh et al., 2001a, Shoop et al., 2002, Sosinsky et al., 2005), the serial tomograms were joined 

along the Z axis using the interactive program MIDAS (which is distributed as part of the IMOD 

image analysis package). Following the reconstruction process, R-weighted back-projection was 

performed to generate a general linear transform that accounted for rotation, translation and stretch 

of one section relative to its nearest neighbour. After joining sections, the final ‘whole cell 

tomogram’ was cropped in XY as much as possible to reduce its file size.  

 

2.3 Sub-volume extraction and classification 

Three key cell compartments/organelles within the tomographic volumes (i.e. the Golgi apparatus, 

mitochondria and insulin granules) were extracted using the IMOD software package (Kremer et al., 

1996). Each of the sub-volume extracts was saved together with information such as volume size, 

mean density, minimum density and maximum density. Due to the variety of cellular compartment 
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information as well as inherently high levels of background noise in the volumes, it was necessary 

to optimise automated and semi-automated methods to segment these key compartments. This was 

initially done based on their ‘sub-group’. 

  

These sub-groups are based on organelle types and in particular the Golgi, mitochondria and insulin 

granules. Each has discrete shapes, and sizes and differences in complexity (see Section 1.3.4). As 

shown in Chapter 1, Figure 1.16 – Figure 1.18, each sub-group was named as ‘case’. To further 

relate the simplified case scenarios (as shown in Figure 1.16 – Figure 1.18) for compartment 

structural complexity to actual examples drawn from the numerous tomograms generated by our 

group. The actual dataset examples used are incorporated into Figure 2.1 (the Golgi apparatus), 

Figure 2.2 (mitochondria) and Figure 2.3 (insulin granules). 
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Figure 2.1 The schematic diagram and the example of real images of the Golgi apparatus.  

 

Schematic diagram of Golgi apparatus A slice from the extracted volume of the Golgi apparatus 

 

Case 1 

 

 
  
 

Case 2 

 

 
 

Case 3 
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Figure 2.2 The schematic diagram and the example of real images of mitochondria. 

 

Schematic diagram of mitochondria A slice from the extracted volume of mitochondria 

 

Case 1 

 

 
 

 

 

 
 

Case 2 

 

  
 

Case 3 

  
 

Case 4 
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Figure 2.3 The schematic diagram and the example of real images of insulin granules. 

Schematic diagram of granules A slice from the extracted volume of insulin granules 

 

Case 1 

 

 
 

Case 2 

 

 

 

Case 3 

 

 

 

Case 4 
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2.4 Towards automated segmentation of cellular tomography 

Compartments/organelles within the tomographic volumes were extracted, filtered, segmented, and 

viewed using the IMOD (Kremer et al., 1996), CoAn (Volkmann et al., 2000), ImageJ (Rasband, 

1997-2014) and BSoft  (Heymann, 1999-2014) software packages, as well as other approaches 

proposed within this project. Due to the low signal-to-noise ratio of the cellular tomograms, it was 

necessary to adjust the segmentation methods and optimise their parameter settings to accurately 

segment different compartments. Sub-volumes of the three key organelles were extracted and each 

was manually segmented. All sub-volume extracts of key organelles were also segmented using 

combination of segmentation methods (see Chapter 3, Section 3.3.2) using the systematic 

approach shown in Figure 2.4. This approach is explained in detail in Section 3.2. The 

segmentation data was then used to generate 3D triangular meshes describing the subcellular 

surfaces of the segmented organelles.  

 

Because sections cut from plastic resin are reported to collapse in the direction of the beam upon 

initial exposure to the electron beam (Luther et al., 1988), the 3D surface-rendered model data were 

re-expanded by a factor of 1.7 in Z to more accurately represent the original topology of sub-

cellular structures under study (Marsh et al., 2001a). To optimise the parameter settings of each 

combination of method flows, the results, i.e. numbers of contours (NOC), contour volume (CV) 

and total mesh surface area (TMS) were compared to those obtained by manual segmentation.  
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Figure 2.4 Flowchart showing the whole process of the research.  

 

Using basic 

measurement/dimensions, box 

out/extract multiple 

examples/cases from cube 

volumes or from a hefty 

volume 

 

Identify the best methods and 

its parameter setting 

Define complexity of key 

organelles (the Golgi, 

mitochondria and granules) 

Output: Table of complexity 

level (case sub-groups of key 

organelles) with description, 

panel of cartoon and real 

image examples 

Cube volumes: extract 

volume containing organelle 

using newstack  

Output: Extraction of 

different examples, cases  

segmentation process – 

identify the best method and 

the best parameter 

Example of extractions 

Basic measurements, record 

in spreadsheet, summarize 

them 

Output: Panel/table of basic 

dimensions 
Segmentation process 

Scientific/mathematical analysis 
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2.5 Quantitative 3D analysis and statistical analysis 

Membrane surface area and volumes were computed from the contours and triangular meshes using 

IMOD (Marsh et al., 2001a, Marsh et al., 2001b). The comparison between the results of automated 

segmentation and manual tracing was performed systematically using the approaches developed 

within this project. High-resolution figures were generated from the data many of which are 

included as supporting materials for Chapter 3, Chapter 4 and Chapter 5 of this thesis. Images of 

tomogram slices and 3D meshes of cellular data were all recorded using the 3dmod and/or 

ModelView window of IMOD.  
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3.1 Introduction  

 

Image segmentation is defined as the mathematical process of separating or partitioning a digital 

image of an object (e.g. an organelle) from a larger, more complex image dataset into multiple 

‘segments’ (i.e. sets of pixels) of non-overlapping, adjacent regions. These segments have some 

basic visual characteristic in common (i.e. intensity, colour, texture) (Pal and Pal, 1993, Volkmann, 

2002) which when accurately defined, can provide a meaningful yet simplified representation of the 

information within the original image. Segmentation is thus a crucial step in defining basic 

structural features of cells and sub-cellular compartments, prior to quantitative analysis and 

annotation of complex cellular images.  

 

Manual tracing is most widely used for segmenting complex structure resolved by electron 

tomography. Typically users experienced in the cellular and/or biological processes of interest must 

analyse each tomogram before the objects of interest (OOI) can be properly segmented. Dedicated 

software packages that provide manual contour drawing tools for biological image analysis include 

IMOD (Kremer et al., 1996) and TomoJ (Messaoudii et al., 2007). Familiarisation with the visual 

heuristics of the tomographic image data, aids the expert in recognising cell organelles, thereby 

enabling them to carefully draw the contour lines defining each organelle boundary. The drawing 

process is then repeated on each adjacent slice of objects in the tomograms across every slice 

spanned in Z. A set of contours for each object are created prior to generating a continuous 3D 

surface where the triangular/polygonal meshes between adjacent contours belonging to the same 

surface are matched. The meshing process is carried out on each organelle to produce a high fidelity 

3D model to describe the spatial and structural organisation of compartments and other structures 

within a cellular region, and to compute precise quantitative data (Noske, 2010).   

 

The drawback of manual segmentation of large cellular tomograms is that it is very labour 

intensive. As reported in (Marsh et al., 2001b) a tomogram estimated to represent just 1% of the 

total volume of a mammalian cell required approximately 3600 h (9-12 months) to completely 

segment manually at the organelle level. Furthermore differences in criteria applied by different 

experts/users can lead to differences in volume estimation of some cellular tomogram regions. The 

highest consistency and sensitivity of manual tracing is therefore achieved when a single individual 

traces the entire dataset. Achieving consistency in tracing such complex structures is also 
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painstaking for the expert and time consuming. For these reasons, computational procedures for 

segmenting and quantifying the organelles have attracted considerable interest. 

 

Segmentation of high-throughput cellular datasets, using a ‘one size fits all’ fully automated 

segmentation algorithm is complicated by the inherent structural diversity within various cellular 

compartments. Furthermore to achieve accurate 3D models of organelles for visualisation and/or 

annotation purposes, particularly for complex organelle structures, the performance of fully 

automated segmentation algorithms (i.e. that use ‘one standard parameter setting’ or parameter free 

algorithm) may highly depends on post-processing. Post-processing at the final stage of organelle 

segmentation is always time consuming and less consistent in terms of accuracy (Fernandez, 2009, 

Lebbink et al., 2007, Winkler, 2002).  

 

The problems of manual and fully automated segmentation processes can be addressed through the 

development of semi-automated segmentation processes based on the careful definition of structural 

features of cellular compartments such as organelles.  

 

The process of segmentation is greatly enhanced by first applying an image filter that ‘reduces the 

noise of inherently low signal: noise electron tomography data while preserving object edges. 

Several methods have been developed for reducing image noise either using general approaches 

such as image filters (e.g. rank filters, classical filters) or by focusing on a particular type(s) of noise 

(Narasimha et al., 2008). Many image filters have been developed to suppress background noise, 

such as low pass, Wavelet transforms and median filters (Gonzalez, 2002). Image filters that have 

been successfully applied on ET include median filters (Pratt, 1978, van der Heide et al., 2007), 

bilateral filter (Tomasi and Manduchi, 1998, Jiang et al., 2003, Pantelic et al., 2007, Pantelic et al., 

2006, Ali et al., 2012) and diffusion-based filters (Perona and Malik, 1990). Nonetheless, the 

capability to suppress noise without blurring the high resolution details (the signal) remains the 

main challenge in image filtration processes and typically there it is a requirement to balance noise 

reduction with signal preservation.  

 

The aim of this chapter is to design and develop a semi-automated workflow for cellular tomogram 

segmentation (CTS). The purpose of this workflow is to highlight feasible procedures for obtaining 

optimised settings for accurate organelle segmentation.  Essentially a dataset containing sub-

volumes representing Golgi apparatuses, mitochondria and insulin granules are classified into their 
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types and a range of pre-filters and edge detection methods tested with the aim of developing a 

more automated process of image segmentation based on the concept that the properties of images 

in a given subset class (e.g. organelle complexity) will be relatively similar. Performance of the 

workflow is evaluated by comparison to the manually-segmented reference set. 

 

3.2 Materials and Methods 

 

3.2.1 Subject Data and Cell Tomography Reconstruction 

The procedures and approaches used to prepare 3D reconstructions of dual-axis tomography 

mammalian cell images were detailed in Chapter 2 of the thesis. IMOD software package (Kremer 

et al., 1996), developed and maintained by the Boulder Laboratory for 3D Electron Microscopy of 

Cells, was used for all of these procedures.    

  

3.2.2 Organelle of Interest: Selection, Extraction and Manual Tracing  

A normal human cell consists of a multitude of compartments with varying structure characteristics 

that depicted its individual function(s). Generally, these respective compartments can be divided 

into two main groups: 1) membrane-bound (e.g. the Golgi apparatus, mitochondria, insulin 

granules, vesicles) and 2) non-membrane-bound organelles (e.g. microtubules). Computational 

segmentation methodologies as discussed in Section 3.1 are typically specified for membrane-

bound organelles. Of these membrane-bound organelles, the Golgi apparatus (GA), mitochondria 

(MC) and insulin granules (IG) were selected due to their biological importance in the insulin 

secretion process (Olofsson et al., 2002, Srivastava and Goren, 2003, Wiederkehr and Wollheim, 

2006, Maechler et al., 1997, D'Ambra et al., 1990, Jitrapakdee et al., 2010, Aspinwall, 1999). These 

key organelles have distinct, distinguishing image features and organelle structures (Noske et al., 

2008, Emr et al., 2009, Marsh, 2005, Chen and Chan, 2009, Chan, 2006, Marsh et al., 2001a) which 

potentially make the segmentation technically challenging. 

 

Cellular compartments were extracted using the ‘newstack’ function in IMOD and the organelle was 

boxed out as a set of 2D slices. The XYZ coordinates were then adjusted to the particular organelle. 

Multiple organelles of interest could also be extracted using the ‘boxstartend’ function in IMOD. In 
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the example (Figure 3.1), multiple Golgi stacks with a range of sizes were manually selected and 

marked (draw box for X and Y values using toggle function and determine the number of slices for 

Z value). These values (X, Y and Z) were copied into the boxstartend command in IMOD for 

multiple extractions. Each of these sub-volumes was saved into a separate file. These sub-volumes 

were then classified into their organelle type (i.e. the Golgi apparatus, mitochondria and insulin 

granules). The membranes of the organelles were manually traced in order to obtain a control 

contour dataset. Manual tracing of the cell organelles was performed using IMOD Package Tools 

(Kremer et al., 1996) in native space.  

 

3.2.3 Development of the CTS pipeline for accurate segmentation 

To design and develop the CTS pipeline, a series of studies were conducted on nine image pre-

filtering methods (Gaussian filter, Minimum filter, Maximum filter, 2D Median filter, 3D Median 

filter, Meanshift filter, Kuwahara filter, Non-linear Anisotropic Diffusion (NAD) filter and Bilateral 

filter) and two segmentation algorithms (Watershed algorithm and Snake algorithm) to evaluate 

their benefits and limitations for the proposed study. Detailed information of each of these methods 

was discussed in Chapter 1, Section 1.3. Based on these results the CTS pipeline/workflow was 

developed and the performance of this validated against the manual tracing method.  
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Figure 3.1 An example of selection and extraction process for multiple GA from the same tomogram. 

These three Golgi apparatus structures represent different volume sizes and varied morphologically and structurally. The value of 

XYZ dimensions of each of these Golgi apparatus structures was manually inserted in the ‘newstack’ command in IMOD prior to 

extraction process. (A) XYZ: 155 nm x 283 nm x 410 nm. (B) XYZ: 255 nm x 290 nm x 421 nm. (C) XYZ: 149 nm x 310 nm x 690 

nm. Scale bar: 400 nm. 
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3.3 Designing a workflow for cellular tomography segmentation 

 

3.3.1 Dataset preparation 

 

3.3.1.1 Sub-volume extraction of three key organelles of insulin secretion; the Golgi apparatus (GA), 

mitochondria (MC) and insulin granules (IG) 

More than 400 sub-volumes were extracted from the large tomograms collected within the Marsh 

group at IMB. These represented the Golgi apparatus (75 extracts), mitochondria (191 extracts) and 

insulin granules (157 extracts). Image properties - namely sub-volume location within the raw 

tomogram, sub-volume dimension (i.e. XYZ), minimum density, maximum density, mean density 

and pixel spacing (angstrom unit) - were retrieved and saved simultaneously (Table 3.1). 

Measurements in 2D and 3D (volume) were as standard converted from pixels and voxels to 

nanometre (nm).       

 

Table 3.1 Summary of sub-volume datasets comprised of the Golgi apparatus, mitochondria and insulin granules. 

Key organelles Number of extracts Minimum Maximum Pixel spacing 

(nm) 

GA 75 X: 170 nm 

Y: 188 nm 

Z: 185 nm 

X: 1200 nm 

Y: 1200 nm 

Z: 1100 nm 

2.144 

MC 191 X: 120 nm 

Y: 195 nm 

Z: 185 nm 

X: 1500 nm 

Y: 1500 nm 

Z: 1500 nm 

2.144 

IG 157 X: 120 nm  

Y: 142 nm  

Z: 110 nm  

X: 588 nm 

Y: 600 nm 

Z: 570 nm 

2.144 

 

3.3.1.2 Manual segmentation 

Manual segmentation is usually considered the best and possibly the only practical approach for 

segmenting organelle contours of heavily noise contaminated cellular tomograms (Noske et al., 

2008), and hence was used to establish a reference set (or control dataset) to validate the 

performance of computational workflow segmentation results. For this purpose, organelle 

membranes were manually traced to produce sets of contours using the drawing tools in IMOD. 

Sets of contours of every sub-volume were then modelled (using imodauto function in IMOD) and 

meshed (using imodmesh function in IMOD).  
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Tracing time varied between sub-volumes depending on the organelle type, ‘complexity’ of 

membrane shapes and number of membrane contours per image slice (Table 3.2). The Golgi 

apparatus (GA) frequently had about 5 to 7 cisternum per cisternae stack for the simpler, 

unbranched Golgi, or 5 to 13 cisternum contours on each slice given that some of the stack have 

‘broken/branching’ cisternae. The cisternae membranes were also different in shape and size. 

Therefore, amongst these key organelles, the GA recorded the highest total number of contours 

(NOC). Commensurate with the substantial difference between the NOC for the GA and the other 

two organelles (i.e. MC and IG), segmenting of the Golgi cisternae accounted for almost 70% of the 

total time of manual contour drawing of more than 400 sub-volumes.   

 

Table 3.2 Summary of processing time for conventional tracing of each of key organelle.  

GA: Golgi apparatus; MC: Mitochondria; IG: Insulin granules; NOC: Number of contours. 

 GA MC IG 

Total extracts 75 191 157 

Averaged number of 

image slice 
~200 ~150 ~150 

Total number of 

image slices (z) 
15053 29657 24552 

Total NOC  195789 35589 24552 

Mean NOC of each 

slice 
~13 ~1.2 ~1  

Total tracing time per 

organelle type 
~180 h / 

~10800 min  

~120 h / ~7200 

min 

~70 h /         ~ 

4200 min 

Mean total tracing 

time per sub-volume 
~144 min 

(69%) 

~38 min 

(18%) 

~27 min  

(13%) 

 

 

3.3.2 Segmentation approaches  

 

3.3.2.1 Processed image for accurate contour tracing  

Pre-filtering is an effective way to de-noise the images prior to segmentation – in particular 2D 

image filters such as median filter and non-linear anisotropic diffusion filter (Narasimha et al., 

2008). Based on previous reports (Chapter 1, Section 1.3.2), nine noise reduction pre-filters were 

chosen. These were Gaussian filter (Section 1.3.2.1), Minimum filter, Maximum filter, 2D Median 

filter, 3D Median filter, Meanshift filter, Kuwahara filter (Section 1.3.2.3), Non-linear anisotropic 

diffusion (NAD) filter (Section 3.1.2.4) and Bilateral filter (Section 1.3.2.5). These nine selected 

image filters were classified into two primary groups; classical and complex noise reduction (Table 

3.3).  
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Table 3.3 Nine pre-filtering approaches and their respective initial settings (i.e. proposed by the software/method developer). 

These proposed settings are the settings used for initial experiment prior to pre-filtering optimisation.  

 Image filter 

(name) 

Filter group  

i.e. Classical, Complex (Rank, 

diffusion-based, or bilateral filter ) 

Software 

Package 

Reported optimal 

parameter setting 

(initial settings) 

F1 Gaussian filter Example for classical filter ImageJ Sigma (radius): 2 

F2 Minimum 

filter 

Simplest example for rank filter ImageJ Radius: 2 pixels 

F3 Maximum 

filter 

Simplest example for rank filter ImageJ Radius: 2 pixels 

F4 2D Median Rank filter – Current findings show 

efficient result 

ImageJ Radius: 2 pixels 

F5 3D Median Rank filter – Current findings show 

efficient result  

CoAn Kernel size: 3x3x3 

Iteration: 3 

F6 Kuwahara 

filter 

(Rank filter) Extension of mean 

filter (classical filter) 

ImageJ Kernel size: 5x5 

F7 Meanshift 

filter 

(Rank filter) Extension of mean 

filter (classical filter)  

ImageJ Spatial radius: 3  

Color distance: 25.0 

F8 NAD Diffusion-based filter IMOD K value: 5.6 

Iteration: 20 

F9 Bilateral filter Bilateral filtering BSoft SpaceSigma: 1.5 

RangeSigma: 23.8 

 

Based on the method descriptions, all of these image pre-filters could significantly improve the 

signal-to-noise ratios of these ET images prior to organelle segmentation, thereby improving the 

quality of the latter. The effectiveness of the denoising algorithms was expected to depend largely 

on the image characteristics. Consequently the pre-filter tests of all nine filters were individually 

run on all organelle types (i.e. the GA, MC and IG). In this experiment, the recommended 

parameter settings of respective image filters (see Table 3.3) were used. After the stacks of ET 

images were filtered, they were surface-rendered by automatically. Surface-rendered images were 

then compared to respective surface-renderings of the manually traced ground truth dataset. The 

comparison was made both visually (general rendering quality) and mathematically (i.e. deviation 

of the total surface area value from that of the manually traced control). Settings were adjusted until 

the surface area value was close to its respective ground truth dataset, without compromising its 3D 

representation (the targeted contour and structure of an organelle is comparable to manual tracing 

contour set). The results of this experiment are shown in Figure 3.2 – Figure 3.5 (the Golgi 

apparatus), Figure 3.6 – Figure 3.8 (mitochondrion) and Figure 3.9 – Figure 3.11 (insulin 

granule).  

 



 CHAPTER3-PARAMETER OPTIMISATION FOR CELLULAR TOMOGRAPHY SEGMENTATION  

    

64 

 

 

The Golgi apparatus 

The ground truth dataset for the Golgi apparatus (GA) was the first to be evaluated. A stack 

comprising eight cisternae (Figure 3.2 A) was manually traced (Figure 3.2 B) using different 

colours to represent different cisternae (Figure 3.3 C). The manual process of tracing this dataset 

took about 30 min (1800 s). The total surface area value of the ground truth dataset for this example 

data is ~1.5x10
5 

nm². The unprocessed GA was rendered (Figure 3.3 D). The visualisation of 

unprocessed data (Figure 3.3 E) took less than 20 s. However the process yielded a very high 

surface area value (~10x10
5 

nm²) of automated rendering (compared to manual set which was 

~1.5x10
5 

nm²) and the result was thus unacceptable. Next, the nine image filters were applied on the 

same (unprocessed/real) dataset (the GA volume) (Figure 3.3 F, Figure 3.4 G-J and Figure 3.5 K-

N). Their settings were optimised manually in a systematic manner, i.e. by modifying one variable 

setting at a time. The optimisation process was halted when the surface area value reached the 

closest surface area value of the ground truth – while maintaining accurate 3D visualisation of the 

organelle structure, i.e. the eight cisternae.   

 

  
 

Figure 3.2 Manual tracing of the Golgi apparatus from real electron tomogram. 

(A) A slice of real electron tomogram shows the Golgi apparatus. (B) Manual tracing of (A).  

 

 

 

 

 

A 

 

B 
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Figure 3.3 (Continue from Figure 3.2) 3D surface-rendered models of optimised pre-processed image volume for the Golgi 

apparatus. 

(C) Set of contours of manual tracing, PT: 1800 s, SA: ~1.5x105 nm². (D) Surface rendering of unprocessed image volume, PT: 15 s, 

SA: ~10x105 nm². (E) Set of manually traced contours compared to surface-rendered models for unprocessed tomograms. Pre-filtered 

images using their respective initial settings, where (F) Gaussian filter, PT: 15 s, SA: ~6x105 nm². PT: processing time; s: seconds; 

SA: surface area. 

E 
F 

D C 
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Figure 3.4 (Continue from Figure 3.3) 3D surface-rendered models of optimised pre-processed image volume for the Golgi 

apparatus for Minimum, Maximum, 2D Median and 3D Median filter. 

(G)-(J) Pre-filtered images using their respective initial settings, where (G) Minimum filter, PT: 15 s, SA: ~6x105 nm². (H) 

Maximum filter, PT: 15 s, SA: ~6x105 nm². (I) 2D Median, PT: 15 s, SA: ~6x105 nm². (J) 3D Median, PT: 15 s, SA: ~6x105 nm². 

PT: processing time; s: seconds; SA: surface area.  

 

G H 

I J 
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Figure 3.5 (Continue from Figure 3.4) 3D surface-rendered models of optimised pre-processed image volume for the Golgi 

apparatus.  

(K)-(N) Pre-filtered images using their respective initial settings, where (K) Kuwahara filter, PT: 15 s, SA: ~6x105 nm². (L) 

Meanshift filter, PT: 15 s, SA: ~6x105 nm². (M) NAD, PT: 15 s, SA: ~6x105 nm². (N) Bilateral filter. PT: 15 s, SA: ~6x105 nm². PT: 

processing time; s: seconds; SA: surface area. 

 

 

 

 

 

 

K L 

M N 
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Mitochondria 

The outer membrane of a mitochondrion (Figure 3.6 A) was manually traced (Figure 3.6 B) to 

yield the contoured (Figure 3.7 C) and automatically rendered image (Figure 3.7 D). Details on the 

mitochondria specific of focused membrane are represented in Chapter 2 of the thesis. The manual 

tracing process for this dataset took about 10 min (600 s) and yielded the ground truth dataset of 

~5x10
4 

nm². The background noise and the cristae matrix within the inner membrane of 

mitochondrion affected the surface-rendering of the unprocessed MC (Figure 3.7 E). The 

processing time of this automated rendering took about 8 s but again yielded a very high surface 

area value (~6x10
5
 nm²) compared to manual set. The nine image filters were applied on the same 

(unprocessed/real) dataset (the MC volume) (Figure 3.7 F-H and Figure 3.8 I-N). The post-

processing, i.e. the extra separated contours were removed, was done to encounter the problem of 

unwanted contours from the mesh – particularly the cristae and inner membrane. Their settings 

were manually optimised in the same manner as used for the Golgi apparatus. Contours with +/- 

surface area value of manual tracing would stay.  

 

 

 

 

 

Figure 3.6 Manual tracing of mitochondrion from real electron tomogram. 

(A) A slice of real electron tomogram shows mitochondrion. (B) Manual tracing of (A).  

A B 
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Figure 3.7 (Continue from Figure 3.6) 3D surface-rendered models of optimised pre-processed image volume for 

mitochondrion. 

(C) Set of contours of manual tracing, PT: 600 s, SA: ~5x104 nm². (D) Surface rendering of unprocessed image volume, PT: 8 s, SA: 

~5x105 nm². (E) Set of manually traced contours compared to surface-rendered models obtained for unprocessed tomograms. (F)-(H) 

Pre-filtered images using their respective initial settings, where (F) Gaussian filter, PT: 8 s, SA: ~2x105 nm². (G) Minimum filter, PT: 

8 s, SA: ~2x105 nm². (H) Maximum filter, PT: 8 s, SA: ~2x105 nm². PT: processing time. SA: surface area. 

C D 

E F 

G H 
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Figure 3.8 (Continue from Figure 3.7) 3D surface-rendered models of optimised pre-processed image volume for 

mitochondrion. 

(I)-(N) Pre-filtered images using their respective initial settings, where (I) 2D Median, PT: 8 s, SA: ~2x105 nm². (J) 3D Median, PT: 

8 s, SA: ~2x105 nm². (K) Kuwahara filter, PT: 8 s, SA: ~2x105 nm². (L) Meanshift filter, PT: 8 s, SA: ~2x105 nm². (M) NAD, PT: 8 

s, SA: ~2x105 nm². (N) Bilateral filter. PT: 8 s, SA: ~2x105 nm². PT: processing time. SA: surface area.  

 

M N 

K L 

I J 
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Insulin granules 

The membrane of an insulin granule (Figure 3.9 A) was manually traced (Figure 3.9 B) to yield the 

contoured (Figure 3.10 C) and automatically rendered image (Figure 3.10 D). The manual tracing 

process took about 10 min (600 s). The total surface area value of manual tracing for this example 

of insulin granule data was ~5x10
4 

nm². The unprocessed IG was rendered (Figure 3.10 E). The 

processing time of automated surface rendering is only 8 s. The unprocessed surface-rendered data 

recorded ~5x10
5 

nm² of surface area – this made the result unacceptable. Accordingly, the nine 

image filters were applied on the same (unprocessed/real) dataset (the IG volume) (Figure 3.10 F-

H and Figure 3.11 I-N). Their settings were manually optimised. As for the preceding test, the 

optimisation process was halted when it reached the closest value of surface area to the ground truth 

– while maintaining its 3D visualisation of the IG structure. The surface area values (pixels) of 

optimised-filtered image volumes were recorded, respectively.  

 

 

 

 

 

Figure 3.9 Manual tracing of insulin granule from real electron tomogram. 

(A) A slice of real electron tomogram shows insulin granule. (B) Manual tracing of (A). 

 

A B 
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Figure 3.10 (Continue from Figure 3.9) 3D surface-rendered models of optimised pre-processed image volume for insulin 

granule. 

(C) Set of contours of manual tracing, PT: 600 s, SA: ~5x104 nm². (D) Surface rendering of unprocessed image volume, PT: 8 s, SA: 

~5x105 nm². (E) Set of manually traced contours compared to surface-rendered models obtained for unprocessed tomograms. (F)-(H) 

Pre-filtered images using their respective initial settings, where (F) Gaussian filter, PT: 8 s, SA: ~2x105 nm². (G) Minimum filter, PT: 

8 s, SA: ~2x105 nm². (H) Maximum filter, PT: 8 s, SA: ~2x105 nm². PT: processing time. SA: surface area.  
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Figure 3.11 (Continue from Figure 3.10) 3D surface-rendered models of optimised pre-processed image volume for the insulin 

granule. 

(I)-(N) Pre-filtered images using their respective initial settings, where (I) 2D Median, PT: 8 s, SA: ~2x105 nm². (J) 3D Median, PT: 

8 s, SA: ~2x105 nm². (K) Kuwahara filter, PT: 8 s, SA: ~2x105 nm². (L) Meanshift filter, PT: 8 s, SA: ~2x105 nm². (M) NAD, PT: 8 

s, SA: ~2x105 nm². (N) Bilateral filter. PT: 8 s, SA: ~2x105 nm². PT: processing time. SA: surface area.  
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Processing time manual segmentation vs. automated surface rendered of filtered images 

Even though the 3D visualisation of the surface-renderings shown in Figure 3.2 until Figure 3.11 

were not so accurate, mathematically and visually, as the results of manual tracing, the processing 

time of each of these computational approaches (shown in Table 3.4) achieved significant 

reduction. Each of the approaches (F1 – F9) for the Golgi apparatus achieved a 99% reduction in 

processing time, while mitochondria and insulin granules achieved ~ 98% reduction. Overall, each 

approach recorded only 93 s to process all nine sub-volumes.   

 

Table 3.4 Comparison of processing time between manual tracing and processed images (followed by automated surface 

rendering) and comparison of surface area value between manual tracing and proposed approaches for each organelle sub-

volume.  

Processing time is calculated in seconds (s) and surface area is calculated in x103 nm2 . Man is referred to manual segmentation. 

There are three sub-volumes of each organelle type, the Golgi apparatus (GA), mitochondria (MC) and insulin granules (IG). F1: 

Gaussian filter and automated surface rendering. F2: Minimum filter followed by automated surface rendering. F3: Maximum filter 

followed by automated surface rendering. F4: 2D median filter followed by automated surface rendering. F5: 3D Median filter 

followed by automated surface rendering. F6: Kuwahara filter followed by automated surface rendering. F7: Meanshift filter 

followed by automated surface rendering. F8: NAD filter followed by automated surface rendering. F9: Bilateral filter followed by 

automated surface rendering.  

 Man F1 F2 F3 F4 F5 F6 F7 F8 F9 

GA1 

s 1500 15 15 15 15 15 15 15 15 15 

nm2 ~1.5x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 

GA2 

s 1800 15 15 15 15 15 15 15 15 15 

nm2 ~1.6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 

GA3 

s 1800 15 15 15 15 15 15 15 15 15 

nm2 ~1.6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 ~6x105 

Total (s) 5100 s 45 s 45 s 45 s 45 s 45 s 45 s 45 s 45 s 45 s 

MC1 

s 600 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

MC2 

s 750 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

MC3 

s 750 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

Total (s) 2100 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 

IG1 

s 600 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

IG2 

s 750 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

IG3 

s 750 8 8 8 8 8 8 8 8 8 

nm2 ~5x104 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 ~2x105 

Total (s) 2100 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 24 s 

Grand 

Total 

9300 s 93 s 93 s 93 s 93 s 93 s 93 s 93 s 93 s 93 s 
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Using optimised settings for all nine image filtrations approaches a significant improvement in 

processing speed was achieved for the GA, MC and IG, as expected. While basic structures of 

targeted organelles were visually preserved, in many cases non-specific rendering was also seen and 

this influenced the accuracy of final 3D visualisation of targeted membrane organelle. Thus, 

technically to produce more accurately traced contours, accurate tracing algorithms are also 

important. Two segmentation algorithms were chosen; the snake algorithm (boundary-based 

approach) (Kass et al., 1988, Nguyen and Ji, 2008) and the watershed transform algorithm (region-

based approach) (Volkmann, 2002). Both were tested on all nine pre-filtered images to evaluate 

their performance.  

 

3.3.2.2 Boundary-based versus region-based segmentations 

The processing time of all combinations of pre-filtering and edge detection (18 in total; 9x2) were 

compared to their respective manual ground truth sets (Table 3.5). The sub-volumes were 

processed with optimised settings for each of the nine image filters before initiating the boundary-

based (snakes segmentation) and region-based (watershed segmentation) algorithms. 

 

Snakes (S) 

Semi-automated active contours known as snakes (Andrey and Boudier, 2006) require an initial 

contour to be drawn on every image slice prior to contour segmentation. This initial contour evolves 

continuously according to the number of iterations (snakes parameter). Selecting the right number 

of iteration is crucial as it limits the rigidity of the snakes during evolution towards an image 

contour. However, besides the importance of iteration number, initial contour(s) should be carefully 

depicted as close as possible to the actual organelle membranes to facilitate the evolution of active 

contour. The snakes approach has shown its potential in extracting complex object contours 

including from biological specimens (Andrey and Boudier, 2006). Even though the snakes remain a 

continuous contour, and no ‘unwanted’ objects are segmented (because only the targeted object is 

selected to be traced), snakes can be prone to errors related to the initial contour, and/or 

inappropriate parameters (i.e. iteration number) that could lead to over- or under-segmentation. 

Furthermore like all edge detection algorithms, snakes are susceptible to noisy edges and/or broken 

edges (Figure 3.12).  

Watershed algorithm (W) 
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The Watershed transform (Volkmann, 2002) (Section 1.3.3.1) was developed for accurate 

biological specimen segmentation, and thus was selected to be used in this experiment. This 

automated region-based segmentation has technically proven its ability in detecting object regions 

based on region’s intensity. The method accurately extracted or detected the contour of interest (i.e. 

the organelle’s membrane) including those ‘unwanted neighbouring contours’ (Figure 3.13). Using 

optimised settings of the watershed, the segmentation result of insulin granule yielded a clear 

separation between the contour of interest (granule’s membrane) and the contour of ‘neighbouring’ 

objects. Similarly, the most complex of the three key organelles, the Golgi apparatus, yielded good 

tracing result for the majority of the combination approaches (Figure 3.14).  

 

Table 3.5 Processing time of two combination approaches between optimised image filtration methods followed by snakes (S) 

and image filtration methods followed by watershed (W). 

S1: Optimised Gaussian filter followed by snakes. S2: Optimised Minimum filter followed by snakes. S3: Optimised Maximum filter 

followed by snakes. S4: Optimised 2D Median filter followed by snakes. S5: Optimised 3D Median filter followed by snakes. S6: 

Optimised Kuwahara filter followed by snakes. S7: Optimised Meanshift filter followed by snakes. S8: Optimised NAD filter 

followed by snakes. S9: Optimised Bilateral filter followed by snakes. W1: Optimised Gaussian filter followed by watershed. W2: 

Optimised Minimum filter followed by watershed. W3: Optimised Maximum filter followed by watershed. W4: Optimised 2D 

Median filter followed by watershed. W5: Optimised 3D Median filter followed by watershed. W6: Optimised Kuwahara filter 

followed by watershed. W7: Optimised Meanshift filter followed by watershed. W8: Optimised NAD filter followed by watershed. 

W9: Optimised Bilateral filter followed by watershed. Calculation of processing times is in seconds (s).  

 Man S1 S2 S3 S4 S5 S6 S7 S8 S9 

GA1 1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  

GA2 1800  2000  2000  2000  2000  2000  2000  2000  2000  2000  

GA3 1800  2000  2000  2000  2000  2000  2000  2000  2000  2000  

Total 5100  5500  5500  5500  5500  5500  5500  5500  5500  5500  

MC1 600  800  800  800  800  800  800  800  800  800  

MC2 750  800  800  800  800  800  800  800  800  800  

MC3 750  800  800  800  800  800  800  800  800  800  

Total 2100  2400 2400  2400  2400  2400  2400  2400  2400  2400  

IG1 600  800  800  800  800  800  800  800  800  800  

IG2 750  800  800  800  800  800  800  800  800  800  

IG3 750  800  800  800  800  800  800  800  800  800  

Total 2100  2400  2400  2400  2400  2400  2400  2400  2400  2400  

Grand 

Total 

9300  10300  10300  10300  10300  10300  10300  10300 10300  10300  

 Man W1 W2 W3 W4 W5 W6 W7 W8 W9 

GA1 1500  80  80  80  80  80  80  80  80  80  

GA2 1800  80  80  80  80  80  80  80  80  80  

GA3 1800  80  80  80  80  80  80  80  80  80  

Total 5100  240  240  240  240  240  240  240  240  240  

MC1 600  20  20  20  20  20  20  20  20  20  

MC2 750  20  20  20  20  20  20  20  20  20  

MC3 750  20  20  20  20  20  20  20  20  20  

Total 2100  60  60  60  60  60  60  60  60  60  

IG1 600  20  20  20  20  20  20  20  20  20  

IG2 750  20  20  20  20  20  20  20  20  20  

IG3 750  20  20  20  20  20  20  20  20  20  

Total 2100  60  60  60  60  60  60  60  60  60  

Grand 

Total 

9300  360  360  360  360  360  360  360  360  360  
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A: Slice 4 

 

B: Slice 14 

 

C: Slice 26 

 

D: Slice 32 

 
 

Figure 3.12 The applications of snakes on the optimised filtered images (insulin granule).  

(A-D) Snakes contours tend to converge to ‘meaningless’ edges when there are broken edges bounding an object. In this example, the 

problem begins at slice 14 (B) and becomes progressively worse (slices 32) (D). The images were filtered using optimised 2D 

Median and segmented using snakes from ImageJ. (Snakes segmentation: Gradient threshold=5, number of iterations=150). PT: 20 

minutes (1200 s), SA: ~6x104 nm².  
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C 

 

D 

 
 

Figure 3.13 The applications of watershed on the optimised filtered images (insulin granule).  

(A-D) Watershed algorithm applied on optimised filtered image. (A) A labelmap image with rough spatial shape (the result of 

watershed algorithm) has been transformed to a smoother shape (B). Every single object in (B1) is traced (C). For accurate 

membrane contouring, the organelle of interest is highlighted in light blue (D) where the light blue contour is disconnected to 

neighbouring contours (green). PT: ~20 s, SA: ~8x104 nm². The ground truth dataset of this example; PT: 600 s, SA: ~5x104 nm².    
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W9 

 
 

Figure 3.14 Visual comparison between manual tracing (green contours) and automated segmentation (red contours) for the 

Golgi apparatus.  

Majority of the tracing results show main Golgi structures (i.e. the cisternae) are traced, with a slight over- and under-segmentation. 

Images represent the traced contours laid over real dataset of the GA images. W1: Optimised Gaussian filter followed by watershed. 

W2: Optimised Minimum filter followed by watershed. W3: Optimised Maximum filter followed by watershed. W4: Optimised 2D 

Median filter followed by watershed. W5: Optimised 3D Median filter followed by watershed. W6: Optimised Kuwahara filter 

followed by watershed. W7: Optimised Meanshift filter followed by watershed. W8: Optimised NAD filter followed by watershed. 

W9: Optimised Bilateral filter followed by watershed. 
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The simplicity of the IG appearance particularly the immature granules (i.e. a single layer 

membrane, smaller in volume than neighbouring objects/organelles attached or close to organelle 

membrane have made the automated segmentation easy and straightforward (Figure 3.15 A). While 

the most complex organelle amongst three key organelles, i.e. the Golgi apparatus, also showed 

promising results (Figure 3.16). Although there are problems such as over- and/or under-

segmentation, the contours of cisternae membranes of various morphologies were successfully 

traced by the optimised automated settings. 

  

Mitochondria on the other hand, could not be segmented with the initial settings (Figure 3.15 B). 

Closer analysis showed that the double-layered organelle is denser than other organelles and 

neighbouring objects and this appeared to directly influence the segmentation process and optimal 

settings required. In particular the use of the ‘invert’ function improved segmentation quality. 

 

To conclude the time required by snakes method to manually draw the initial contour on every 

image slice prior to active contouring meant that total processing times were much longer that those 

required using the watershed approach (Table 3.5). The watershed approach not only had faster 

processing times but also exhibited a higher degree of accuracy. Thus, the watershed segmentation 

approach was selected for the development of the processing pipeline for computational 

segmentation and was further tested in combination with the nine denoising filters. Even though 

watershed obtained accurate tracing results, unwanted objects remain the main drawback for 

automated tracing. These required subsequent removal. As the project’s prime objective is to 

produce a rapid and accurate segmentation approach, computational approaches were sought to 

remove unwanted contours. Prior to this, edge or contour refinement is essential to improve the 

traced contours and visualisation.   
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contrast (d: don’t) 

Mathematical morphology: 
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segmentation 

on filtered 

data 
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(optimised) 
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data (with 

‘invert’ is 

switched on) 

   
Figure 3.15 Difference image properties influenced segmented contour result.  

Two different organelle, insulin granule (A) and mitochondria (B) were manually traced. Both examples were also segmented using 

the recommended parameter setting of Method 5 (M5). This setting successfully traced the insulin granule membrane (A). However, 

it failed to draw the contour of mitochondrion membrane (instead it traced the contour of other objects). ‘Invert’ (parameter in 

watershed segmentation) is turned on in the second trial and mitochondrion membrane is finally traced. M5 - i (n): number of 

iteration, watershed - H: high-contour cut-off, L: low-contour cut-off, I: inversion contrast, mathematical morphology – I: initial 

opening, O: opening, C: closing.  
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3.3.2.3 Contour line refinement: Mathematical morphologies algorithm   

Contour refinement allows ‘apparent separation’ between the contour of interest (Figure 3.16) and 

unwanted contours. Practically this can be done using a mathematical morphology algorithm. There 

are two operations in mathematical morphology commonly used for contour refinement. These are 

opening (i.e. erosion followed by dilation operation) and closing (i.e. a dilation followed by erosion 

operation) (Dougherty and Latufo, 2003). The maplmorph function in CoAn (Volkmann et al., 

2000) was used for this study. It detects edges and disconnects objects using optimised settings of 

opening and closing (Figure 3.17). This will allow the object of interest to be selected 

computationally.   

 

3.3.2.4 Meshing: Contour volume  value and mesh surface area scoring  

Based on a 3D mesh contour of an object, its volume (CV – contour volume) and surface area 

(MSA – Mesh surface area) can be calculated and used for quantitative comparison with the manual 

reference set. Meshing was performed automatically by using the imodmesh function in IMOD. The 

process was performed on the segmented stacks of image slices of each organelle.  

 

Contour volume (CV): 

The contour volume (CV) is a sum of the area of contours (of each of Z slice of an object) times the 

distance to the connected contours in Z; The CV value is chosen for two reasons;  

1. It handles the problem of skipped sections (Kremer et al., 1996) 

2. It gives a slightly more accurate volume measurement for the capped regions because it 

integrates with a trapezoidal approximation (Kremer et al., 1996)  

 

Mesh surface area (MSA):  

The mesh surface area is the total surface area of a mesh volume, computed by adding the areas of 

all the triangles in the mesh.  
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Figure 3.16 Application of opening and closing (mathematical morphologies operations) in membrane disconnection.  

(Upper part) A part of the Golgi cisternum membrane ‘connected (yellow box) with other contour (shown in labelmap image). 

(Below) This connected part is disconnected (yellow arrow) after mathematical morphologies algorithm applied on labelmap.  
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In theory an object accurately segmented by two independent methods should have identical 

contour volumes. To test the effectiveness of contour volume (CV) as a metric to quantitatively 

compare contour sets of automated segmentation, they were assessed in comparison to a manual 

reference. By doing this, unwanted contour sets could be deleted in an automated manner when the 

CV value of automated segmentation did not closely match the CV of manually traced referenced 

contour sets. Furthermore this approach proved useful when more than one contoured volume was 

traced in a given tomographic sub-volume as the maplpick function (CoAn) can be used to detect 

and delete unmatched volume(s). MSA, provide an exact measure of the area of the mesh, and was 

used as the second assessment of the segmentation results and for identification of the best 

combination of method settings.    

 

(A) Unprocessed image 

 

(B) Filtered image 

 

(C) Label map 

 

(D) Segmented image (RPS) 

 

(E) OPS (labelmap manipulation) 

 

(F) Final result (OPS and MT) 

 
Figure 3.17 Removing unwanted contours computationally from optimised segmentation result. 

By referring to the CV information of manual tracing contour set, unwanted object membranes were prevented from being traced to 

produce only the correct contour. (A) Original data of insulin granule. (B) Optimised Non-linear anisotropic diffusion (NAD) filter 

used to filter the image volume of (A). (C) Filtered image of (B) was converted into a ‘label’ map. (D) Yellow arrows show the 

unwanted contours. (E) Label map data in which the ‘unwanted regions’ identified in (D) have been deleted. (F) The final segmented 

contour using optimised parameter settings (OPS) (red contour) on the background of the filtered image. It compares closely to the 

manually traced contour (green contour).      
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3.3.2.5 Proposed method flow for automated and accurate cellular compartment segmentation    

The proposed workflow is based on four main stages;  

1) Data preparation (e.g. sub-volume extraction, image file conversion, denoising)  

2) Segmentation 

3) Statistical evaluation  

4) Contour selection  

 

In terms of data preparation there are two categories of image filter; 2-dimensional (2D) and 3-

dimensional (3D). For 2D filters, the datasets (.mrc) must first be converted into a .tiff file, for input 

into the software package (i.e. ImageJ). The conversion process was conducted with mrc2tif 

function in IMOD. The .tiff image stacks were then filtered using 2D filters. These filtered stacks 

were then converted back to the.mrc file format using the tif2mrc function in IMOD for further 

downstream segmentation.  

 

Unlike 2D filter methods, the 3D filters will process the original datasets (.mrc) directly. All filtered 

stacks of images were then segmented using the watershed function (i.e. mapcarv), provided by 

CoAn (Volkmann et al., 2000) to produce a label map. The CoAn system automatically checks these 

label maps for unwanted contours which usually appear ‘smaller’ than the object of interest – by 

turning on ‘deleting blobs’ function in CoAn. Function maplpick (CoAn) was used to delete all these 

unwanted densities.  

 

Next mathematical morphology algorithm (i.e. maplmorph) was applied. Lastly a set of contours for 

every stack was produced. The process of optimising parameter settings particularly for image 

filtrations and watershed transform was started using the recommended settings of the respective 

software developers  

 

The ‘ground truth’ datasets were generated from manual tracing of the datasets. From these contour 

sets, cylinder volumes (CV) were calculated by taking the area of each contour times the thickness 

of the sections (defined by pixel size and Z-scale) (Kremer et al., 1996), summed over all of the 

contours (imodinfo). Stacks of contours of each sub-volume were meshed, and meshed surface area 

(MSA) of each was calculated and saved.  
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The CV information of respective ground truth datasets is important to identify optimal settings of 

the CTS method’s parameter(s). The MSA information was used to validate the best (optimised) 

method flow(s) amongst the nine method flows for particular cases of organelle segmentations (i.e. 

both calculations; CV and MSA are important and are used to stop the parameter adjustment 

process).  

  

A written pseudocode – the sequence of steps taken to interpret the whole pipeline was developed 

(Figure 3.18) prior to designing a comprehensive workflow (Figure 3.19). The workflow is divided 

into three major stages. Overall, nine methods flows were suggested (M1-M9) where; M1: 

Gaussian filter followed by watershed and mathematical morphologies; M2: Minimum filter 

followed by watershed and mathematical morphologies; M3: Maximum filter followed by 

watershed and mathematical morphologies; M4: 2D Median filter followed by watershed and 

mathematical morphologies; M5: 3D Median filter followed by watershed and mathematical 

morphologies; M6: Kuwahara filter followed by watershed and mathematical morphologies; M7: 

Meanshift filter followed by watershed and mathematical morphologies; M8: Non-linear 

anisotropic diffusion (NAD) filter followed by watershed and mathematical morphologies; and M9: 

Bilateral filter followed by watershed and mathematical morphologies.       
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Prepare nine similar sets of the area of interest. 

 

Convert six volumes of original data into stacks of .tif files (e.g. extract001_slice0001.tif) by using mrc2tif 

(IMOD) to number the files in sequence during conversion for 2D noise reduction. 

 

Convert another three volumes into normalised 32-bit floating point format by using maptool (CoAn), save as a 

.map volume (e.g. extract001.map) for 3D noise reduction. 

 

Filtering process: image sequence .tif files are filtered by each 2D filter and saved as 

extract001_slice0001_filtered.tif, whilst the 3 .map volumes are filtered by each 3D algorithm and saved as 

extract001_filtered.map. 

 

Convert filtered 2D .tif stacks into .mrc volumes by using tif2mrc function (IMOD), then convert to normalized 

32-bit floating point .map files as in step 3. Restore volume origin and voxel size based on original extracts. 

 

Segmentation process: All filtered volumes are then subjected to 3D watershed segmentation (mapcarv from 

CoAn), producing “labelmaps” of objects. 

 

Remove small objects and noise from label maps using maplpick (CoAn). 

 

Apply closing-opening operations for some morphological correction and/or smoothing on labelmaps images 

by using maplmorph (CoAn). 

 

Make model file by using imodauto (IMOD) and save image result as model (.mod) file. 

Figure 3.18 Pseudocode for the proposed pipeline of cellular compartments segmentation.  

 

 

 

 



 CHAPTER3-PARAMETER OPTIMISATION FOR CELLULAR TOMOGRAPHY SEGMENTATION  

    

88 

 

 

 

 

 

                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Workflow diagram of the proposed systematic approach for accurate segmentation.   

Two main stages (as highlighted) proposed to comprehend the pipeline of complete segmentation procedure.   

Target scoring system 
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The ‘best’ setting of the method was determined when the segmentation result met these three 

requirements;  

 

1) The membrane contour(s) of the targeted organelle was/were segmented.  

2) No additional unwanted contours of neighbouring objects or organelles were segmented. 

3) Once requirement (1) and (2) were achieved, the mesh surface area (MSA) of the traced 

contour(s) was calculated to establish whether it was within -/+ 25% (Figure 3.20) of the MSA 

calculated for the manually segmented sub-volume.  

 

The most critical and time consuming procedure is the second one (i.e. parameter settings 

optimisation) as it employs a ‘trial and error’ routine. Consequently a ‘target scoring system’ was 

proposed to help identify the ‘best’ combination of parameter settings of the different method flows 

(Figure 3.21).  

 

 

 

 

Figure 3.20 Target scoring system. ‘100%’ is referred as a ‘target point’ of ground truth datasets.  

All mesh volumes of manual tracing is ‘labelled’ as 100%. Any results of computational methods scored +/- 100% (of respective 

MSA) will determine a score of 5, and so on. Target scoring for each sub-group will differ according to its ground truth (gold 

standard) datasets. 5 scores of MSA range were proposed where ‘5’ is the best while ‘1’ is the worst.   
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Figure 3.21 Differences between segmentation results (i.e. ‘best’ settings of different method flows) for mitochondria. 

(A) Manual segmentation (red contour) of the raw data. The cyan contours in B to D are the results of ‘best’ settings of 3 different 

method flows that are superimposed on raw data. (B) M1 (optimised Gaussian filter followed by optimised watershed and 

mathematical morphologies) where the MSA was ~80% of the MSA manual segmentation (i.e. the MSA of M1 was less ~20% from 

the MSA of manual segmentation). This result score 2. (C) M9 (optimised bilateral filter followed by optimised watershed and 

mathematical morphologies), the MSA was recorded as 91% (i.e. less ~10%) compared to manual segmentation. This result score 4. 

(D) M8 (optimised non-linear anisotropic diffusion filter followed by optimised watershed and mathematical morphologies), the 

MSA was 101% and this was the most accurate result of the method flows tested for this mitochondrion segmentation. This result 

score 5. Scale bars: 100 nm. 

 

3.3.3 Refining parameter settings of segmentation method flows  

To refine methods capable of more automated approaches to segmentation, 10 sub-volumes of each 

of the three key organelles (i.e. a total of 30 sub-volumes) were systematically chosen such that a 

variety of sub-volumes sizes were represented for each organelle. The recommended parameter 

settings (RPS) of all nine method flows were employed prior to optimising the methods settings. 

Contour sets were meshed. These meshed volumes were then used to compute the contour volume 

(CV) and meshed surface area (MSA). By using the CV, unwanted contours or contour volumes 

(i.e. which are not similar to the CV of the ground truth) were deleted computationally. 

Optimisation of settings was continued until the MSA of the computational method approached the 

values of the manual MSA of the ground truth set (a score of 5 being best and 1 the worst). 

 

Insulin granules and particularly immature granules with a ‘simple appearance of structure’ (i.e. 

empty lumen and smooth boundary membrane) were successfully contoured (score 5) with 

optimised image filters and optimised watershed of every method flow (M1 – M9). The CV and 

MSA value of M1-M9 for the example dataset (Figure 3.22) consistently achieved a score of 5 

according to the ‘target scoring system’. 

 

A B C D 
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Almost all sub-volumes of the Golgi apparatus faced similar problems when segmented, exhibiting 

both over- and/or under-segmentation – as discussed in Chapter 1 (see also Figure 3.23 A). Setting 

optimisation was commenced with image filtration followed by the watershed (Figure 3.23 B).  

 

(a) Study: Mean density value of filtered images could determine settings of watershed  

Optimising parameter settings of watershed algorithm is not straightforward and very time 

consuming, particularly when segmenting unique objects of low signal-to-noise ratio 3D images. 

Thus, a simple study amongst organelles image properties of segmented organelle sub-volumes was 

set up. From this analysis, five ‘ranges’ of mean density values were identified and the datasets 

were classified into these groups. From these ranges, the settings of watershed were simply 

observed (Figure 3.24). Higher values of ‘high contour cut-off’ (i.e. parameter of watershed 

algorithm) were used to segment filtered images of organelle data with lower mean density values, 

and vice versa. All examples used the same value of lower contour cut-off. Knowing the mean 

density value of filtered images could expedite the process of optimising parameters of watershed  

(Volkmann, 2002) for accurate tracing of one organelle sub-volume. It also encourages the 

adjustment of other parameter of watershed for more reliable optimised settings. This not only 

significantly alleviates in parameter optimisation for watershed algorithm but also reduces the 

processing time of parameter adjustment (i.e. the trial and error approach). Mean density of the 

filtered image was identified as possibly being important to facilitate the process of segmentation 

using the watershed approach.  

 

(b) Organelle type determine the ‘contrast inversion’ setting 

As mitochondria are radically ‘darker’ (high contrast image organelle) than the insulin granules and 

the Golgi apparatus the settings of watershed were run using ‘invert’. As image contrast was found 

to be important for accurate automated segmentation, classification of similar objects into separate 

classes could expedite their contouring.  
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MANUAL TRACING 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746869 

Mesh surface area (MSA): 

5612    

 

M1 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746888 

Mesh surface area (MSA): 

5620 

Score: 5  

 

M2 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746845 

Mesh surface area (MSA): 

5615   

Score: 5 
 

M3 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746559 

Mesh surface area (MSA): 

5612  

Score: 5 

 

M4 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746190 

Mesh surface area (MSA): 

5661  

Score: 5   
 

M5 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746285 

Mesh surface area (MSA): 

5629   

Score: 5 

 

M6 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746385 

Mesh surface area (MSA): 

5642   

Score: 5 
 

M7 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746912 

Mesh surface area (MSA): 

5622   

Score: 5 

 

M8 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746716 

Mesh surface area (MSA): 

5612   

Score: 5 
 

M9 

Number of contour per 

slice: 1 

Total number of contours: 

139 

Contour volume (CV): 

1746860 

Mesh surface area (MSA): 

5617   

Score: 5 

Figure 3.22 Comparison of segmentation results between method 1 – method 9 with manual tracing. 

Middle Z slice of insulin granule sub-volume image stack. Visually, segmented contour in M1-M9, i.e. method 1-9, show similar 

contoured membrane (i.e. the object, the shape and the size) compared to manual set. All results of M1-M9 have scored 5 (the highest 

score according to the target scoring system) – similar results of CV (voxels) and MSA (pixels) were also recorded. Besides that the 

same result of mean number of contour per image slice (i.e. 1 contour) and the total number of contours, as compared to the manual 

tracing were recorded.  
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(A) 

 

 

Recommended 

settings: 

Image filter: Median 

3D: 3x3x3, i(n): 3 

Watershed 

HC:1.0 

LC: 0.0 

(B) 

 

 

Final OPS: 

Image filter: Median 

3D: 3x3x3, i(n): 5 

Watershed  

HC:1.0 

LC: 0.0 

 

Figure 3.23 Comparison between result retrieved from recommended settings and optimised settings of method 2 (M2). 

(A) Segmentation result of the proposed settings shows smooth segmented contours, however it is lacking in number of segmented 

cisternae. (B) The OPS of [M2] shows a better segmentation result where more contours of the cisternae was segmented, without 

adjusting the setting of watershed. Median 3D i(n): Number of iteration, Watershed HC: high contour cut-off, LC: low contour cut-

off. 

 

3.3.3.1 Quantitative and qualitative analyses 

For the best analysis process of segmented result and to choose the best parameter settings of 

particular organelle sub-groups, quantitative and qualitative analyses were established accordingly. 

Number of contours (NOC) was first manually examined (Figure 3.25 column 2). The closest NOC 

value of automated tracing to respective NOC obtained manually will be chosen. Then these 

contour sets were visually assessed and analysed (Figure 3.25, column 3 to 5). Visual comparison 

was made (Figure 3.25 column 6) to allow experts to determine the best segmentation result(s). In 

the example of Figure 3.25, 5 results were selected (i.e. acceptable) where the comparison showed 

surfaces ‘free’ from ‘roughness’ (as shown by blue arrows). The next assessment is to choose the 

best three (amongst 5 acceptable results) using scoring system (Figure 3.26). Respective optimised 

settings of the best segmentation result (or the best three) were recorded. These settings were used 

to segment other organelle sub-volumes of the same organelle type. Parameter adjustment was 

performed for accurate tracing results of respective organelle sub-volumes.  
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Mean density range 

(density units) 
HC levels Number of sub-volumes Percentage to organelle 

classification according to mean 

density value for parameter 

optimisation 

MD1 (≥0-100≤) HC 1.0 12 100%  

HC 0.5 0 

HC 0.1 0 

MD2 (≥100-150≤) HC 1.0 7 70% 

HC 0.5 3 

HC 0.1 0 

MD3 (≥150-200≤) HC 1.0 0 100% 

HC 0.5 9 

HC 0.1 0 

MD4 (≥200-250≤) HC 1.0 0 82% 

HC 0.5 2 

HC 0.1 9 

MD5 (≥250-300≤)  HC 1.0 0 88% 

HC 0.5 1 

HC 0.1 7 

 

 
Figure 3.24 Five ranges of mean density of filtered images identified.  

These five ranges of mean density values show significance role in dictating the parameter settings for watershed algorithm (i.e. the 

parameter high-contour cut-off or HC). Mean density sub-class 1 to sub-class 5 are labelled as MD 1 - MD 5. MD 1 and MD2 

recorded to have setting of HC: 1.0. MD 3 recorded to have setting of HC: 0.5. MD 4 and MD 5 recorded to have setting of HC: 0.1.         
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granule1 # 

contour 

Slice 10 Slice 25 Slice 40 Comparison  

(3D visualisation) 

Comments  

Optimised 

M1 

49 

   

 

Less acceptable 

Optimised 

M2 

49 

   

 

Less acceptable 

Optimised 

M3 

49 

   

 

Acceptable  

Optimised 

M4 

49 

   

 

Less acceptable 

Optimised 

M5 

49 

   

 

Acceptable 

Optimised 

M6 

49 

   

 

Less acceptable 

Optimised 

M7 

49 

   

 

Acceptable 

Optimised 

M8 

49 

   

 

Acceptable 

Optimised 

M9 

49  

   

 

Acceptable  

Figure 3.25 Nine segmentation results representing nine different method flows (M1 – M9).  

M1: Gaussian filter and watershed; M2: Minimum filter and watershed; M3: Maximum filter and watershed; M4: 2D Median filter 

and watershed; M5: 3D Median filter and watershed; M6: Kuwahara filter and watershed; M7: Meanshift filter and watershed; M8: 

NAD filter and watershed; M9: Bilateral filter and watershed. The analysis starts with looking at the total number of contour 

produced from automated segmentation methods. In this case the sub-volume example (i.e. insulin granule) has an original stack of 

49 contours. 3 image slices were randomly chosen to assess the contour of interest were traced. In the comparison column, both 

manual (red) and automated methods (green) were merged together for 3D visual assessment to see the ‘roughness surfaces’ as 

shown by blue arrows. Five results; M3, M5, M7, M8 and M9 were selected for this segmentation case as ‘acceptable’ based on 

comparison with manual tracing and the scoring system.   
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File ID 90in X axis: before mesh (left) and after mesh (right) Comments Mesh surface area (MSA) 

/ 1000 000 and the score 

Manual   0.04125 

M3 

 

Acceptable 

Basic shape of the 

granule is produced. 

Contours of manual 

tracing (red) appear to be 

‘larger’ than M3 (green) 

at the middle slices. 

 

MSA/1000k: 0.05090  

 

Score: 5 

M5 

 

Acceptable 

Basic shape of the 

granule is produced. 

Contours of manual 

tracing (red) appear to be 

‘larger’ than M5 (light 

blue) at most of the 

slices.  

 

MSA/1000k: 0.05086 

 

Score: 5 

M7 

 

Acceptable 

Basic shape of the 

granule is produced. 

Contours of manual 

tracing (red) appear to be 

‘larger’ than M6 (yellow) 

at most of the slices. 

 

MSA/1000k: 0.05080 

 

Score: 5 

M8 

 

Acceptable 

Basic shape of the 

granule is produced. 

Contours from manual 

segmentation (red) 

appear to be ‘larger’ than 

M7 (dark blue) at parts of 

middle slices. 

 

MSA/1000k: 0.04838 

 

Score: 5 

M9 

 

Acceptable 

Basic shape of the 

granule is produced. 

Contours from manual 

segmentation (red) 

appear to be ‘larger’ than 

M9 (purple) at parts of 

middle slices. 

 

MSA/1000k: 0.04901 

 

Score: 5 

Figure 3.26 The best five results have a score of 5.  

Using the system detailed in Section 3.3.4, the score of each segmentation result of automated techniques is given. Another 

comparison between manual (red) and automated methods (green, light blue, yellow, dark blue and purple) shown in the second 

column. The example shown in this figure represents the simplest case of image complexities. All 5 acceptable results (from previous 

assessment, Figure 3.25) have a score of 5.   
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3.4 Conclusion 

Any cellular segmentation process has to deal with image complexity and background image noise. 

There are many demonstrated pre-filtering methods capable of improving the signal-to-noise ratio 

of an image and enhancing edges such as the compartment edges and suppress the noise to facilitate 

the tracing process (Narasimha et al., 2008, van der Heide et al., 2007). However, most of them 

obtain their best capacity if the ‘noise’ is known (Rudin et al., 1992, Zhou and Zhang, 1999). To 

date, no single settings of mathematical segmentation method has shown its effectiveness on whole 

tomograms, i.e. so that every single cellular compartment is accurately traced without any ‘extra 

segmented regions/contours’.  

 

Pre-processing is an essential step for accurate segmentation. Pre-processing is necessary to 

suppress image noise as well as enhance the organelle edges. To establish the final segmentation 

results for better visualisation and to benefit the analyses of results, an effective pipeline of 

automated segmentation for accurate segmentation result was developed (Section 3.3.5). The 

pipeline involves three main stages; 1) data preparation including sub-volume extraction and image 

file conversion, 2) optimised parameter settings which involve 3 main steps in automated 

segmentation including image filtration, watershed algorithm and mathematical morphologies 

operations, 3) statistical evaluation using target-scoring system that is used to identify the ‘best’ 

combination segmentation method amongst nine different method flows and 4) contour selection 

(applied when the deletion of unwanted contours are needed). Despite specific abilities in 

suppressing background noise, or improving edges of targeted membrane organelle, the settings of 

parameters for particular method flow were defined as the best (optimised) based on three primary 

analyses including visual observation and mathematical computation. Even though this chapter has 

reported a proposed segmentation pipeline that has given promising computational results and 

increase automated segmentation efficiency, the identification of optimal setting for 400 sub-

volumes is still time consuming. It will be harder for 4000 or even 40,000 sub-volumes. It was 

hypothesised that additional  image properties for each key organelle could expedite the 

identification of optimal image processing settings within the method flow, and thus further 

‘simplify’ the process, with the potential to identify standard optimised settings for organelle 

segmentation according to its image properties. This hypothesis forms the basis of Chapter 4 of 

this thesis.  
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Chapter 4 3-DIMENSIONAL CHARACTERISTICS AND IMAGE 

FEATURES TO DICTATE PARAMETER OF CHOICE TOWARDS 

AUTOMATED CELLULAR TOMOGRAPHY SEGMENTATION  
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4.1 Introduction 

 

To define the accuracy of segmentation requires comparison to a reference ‘ground truth’ data set 

which is provided in the form of mesh models. The production of 3D segmented mesh models by 

manual segmentation was described in (Noske et al., 2008) and Chapter 3 of this PhD thesis. 

However, to segment more than 400 organelle sub-volumes and to have more than 1200 optimised 

settings is impractical. The aim of this chapter is to test the hypothesis, that it is possible to sub-

classify subsets of key organelles (e.g. subsets of mitochondria classes) and to use these subsets as 

‘standard’ reference sets for the determination of optimal parameter settings. The rationale for 

taking this approach is that the identification of optimal parameter settings for a given sub-class of 

objects could increase the rate and accuracy of semi-automated segmentation using the 

segmentation pipeline developed in Chapter 3. 

 

In this chapter, ranges of image characteristics were defined for the Golgi apparatus, mitochondria 

and insulin granules. Image characteristics of selected organelle types include the general 

appearance of the organelle in the cross-sectional (i.e. 2D) images, its shape, size and volume, and 

internal features. Based on these features sub-classification was iteratively conducted until stable 

and optimal parameters settings could be identified for all of the organelles in the specified sub-

class. This approach therefore allowed the identification of a combination of filter, segmentation 

algorithm and mathematical morphology operations that yielded accurate segmentation results in a 

reproducible manner. 
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4.2 Results 

4.2.1 Classification of organelles of interest sub-types  

The aim of the first experiment of this chapter was to subdivide the ~400 images of insulin granules 

(157), mitochondria (191) and the Golgi apparatus (75) into a more finely differentiated set of 

structurally distinct sub-classes and to characterise their structural differences. The sub-typing of 

these organelles is important for three reasons. First it provides the basis for a deeper understanding 

of the biology of insulin secretion. Second it facilitates the development of a structural key based on 

3D data to assist experts with the careful typing of subclasses of these organelles. Third the 

extracted organelles in each sub-class provide the data sets required to define the key parameters 

describing them. These parameters ultimately underlie the rules that must be defined and integrated 

into algorithms to facilitate automated segmentation.   

 

Prior to the sub-classification process, 423 sub-volumes of three types of key organelles were 

manually contoured (Section 3.3.1) and computationally meshed. Both processes used IMOD tools 

(Kremer et al., 1996, Mastronarde, 2006). Besides the raw structural data (refer to Section 3.3.1) 

such as organelle dimensions (nm), minimum, mean and maximum density, mesh model related 

data such as the number of contours per image stack, contour volume, mesh surface area, mean area 

(i.e. mean contour area) were analysed and saved simultaneously. All of this information was listed 

and can be retrieved by using the imodinfo function in IMOD. 

 

Next the structural features of the organelle sub-types were analysed and illustrated. A list of the 

XYZ dimension values ranges (nm) of organelle sub-volumes classified in a given sub-type were 

listed as minX, maxX, minY maxY, minZ maxZ  (refer to Table 4.1, column 3, 4 and 5 from left). 

Here these dimensions refer to the length of the edges of a box volume just containing a given 

organelle; min and max refer to minimum and maximum image box dimensions of a set of such 

boxed organelles.  
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4.2.1.1 Insulin granules  

Based on the analysis of 157 insulin granules of non-stimulated cells, the following schematic 

illustrating insulin granule maturation was developed. This shows the transition of immature 

granules (Figure 4.1 A) to mature granules (Figure 4.1 B). When the insulin granules are ready to 

release the insulin (i.e. to form new vesicles/ immature granules) the crystalline core is proximal to 

organelle membrane (Figure 4.1 C) prior to forming new vesicles (Figure 4.1 D). This figure is 

consistent with previous reports (Noske and Marsh, 2011) and provides a structural key for insulin 

granule development.  

 

 

   

 

 

Figure 4.1 Schematic diagram showing the transition of insulin granule appearance (upper row) and respective examples of 

raw data (bottom row).  

(A) Immature granules with incomplete insulin core. (B) Mature granules with complete insulin core located at central of the 

organelle. (C) The crystal is closer to organelle membrane prior to release of insulin. This type of insulin granules usually appears 

close or proximal to cell membrane (red arrow). (D) Newly formed vesicles usually appear smaller than immature granules and are 

usually close to the cell membrane (red arrow). The order of the event is summarised and simplified from Fig. 4. (Schuit et al., 2002) 

and Fig. 3 (Guinamard et al., 2010). Scale bars: 100 nm. 

 

Insulin granules were divided into two distinctive ‘types’; the ‘immature granules’ and the ‘mature 

granules’ based on their morphology (Figure 4.2). The immature insulin granules were observed to 

have either an empty lumenal space, or ‘undeveloped’ insulin cores that presented as dispersed dots 

within the lumenal space. These dots measured between ~4-11 nm. Both were assigned to Insulin 

Granule Class 1 (IG_C1). The ‘mature granules’ appeared to have a more complete or crystal-like 

insulin core which presented as a ‘dense’ core within the lumen space. When the insulin core was 

seen to be spatially separate from the organelle membrane and located towards the centre of the 

lumenal space, this type of insulin granule was assigned to Insulin Granule Class 2 (IG_C2). In 

some cases the insulin cores were in contact with the organelle membrane and/or sometimes the 

D C B A 
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lumenal spaces appeared darker or denser (not shown in the figure), they were assigned to Insulin 

Granule Class 3 (IG_C3).    

 

   

IG_C1 

 

Immature, 

unbound insulin 

Figure 4.2 Image classes for insulin 

granules. 

Class 1 of Insulin granules are defined 

as ‘Immature’ and the core insulin is 

incompletely developed. In Mature 

Granules’ the core insulin is more 

completely developed. Class 2 

contained ‘crystal-like’ insulin cores 

within the IG membrane. Class 3 

contained crystalline insulin granules 

that were seen to be attached to the 

granule membrane. Scale bars: 100 

nm. 

 

  

IG_C2 

 

Mature, 

crystalline insulin 

granule 

 

   

IG_C3 

 

Mature, attached 

insulin crystalline 

granule and/or  

 

 

Insulin release from non-stimulated cells is a sustained, slow release process of newly formed 

vesicles triggered independently of sugar (D'Ambra et al., 1990, Efrat et al., 1993). However 

images of completely ruptured insulin granules releasing insulin were not detected in the large 

tomogram. The whole cell tomogram (Figure 4.3) shows insulin granules of each class (i.e. IG_C1, 

IG_C2 and IG_C3) located at different distance from the cell membrane (of two cytoplasm 

environments, A and B).  
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Figure 4.3 Identification of insulin granule locations within a subcellular environment. 

In comparison with cell A where mature granules Class 2 (red arrows) and Class 3 (blue arrows) are seen, cell B has appears to have 

more immature granules (yellow arrow). Most of the mature granules (Class 2 and 3) are proximal to the cell membrane between 

cells A and B). This is because mature granules are ready to release insulin through cell membrane. Immature granules (yellow 

arrows) are distributed within cytoplasmic environment (shown in cell B). Higher numbers of mitochondria are seen in cytoplasm A 

(where mature granules are located) compared to cytoplasm B. Scale bar: 800 nm.  

 

B 

A 
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4.2.1.2 Mitochondria  

Mitochondria are also involved in insulin secretion in that they generate signals – by providing 

energy in the form of ATP – to initiate and support insulin secretion (Jitrapakdee et al., 2010). As 

shown in the tomogram (Figure 4.3, cell A), mitochondria are actively recruited to sub-cellular 

sites and this is consistent with the observations of others (Maechler et al., 1997, Chan, 2006, Chen 

and Chan, 2009) and also reviewed in (Wiederkehr and Wollheim, 2006). They are electron dense, 

double-layered organelles that, with their characteristic cristae, are relatively easy to identify. 

‘Smaller’ mitochondria mostly appear to be spherical in shape and are simple in terms of their 

characteristic structure. Here, ‘smaller’ mitochondria were considered as having a diameter of 

~270-300 nm with similar sub-volume box size (i.e. XYZ 3-Dimension) ~300 x 300 x 300 nm. 

Such mitochondria have been categorised as Mitochondria Class 1 (MC_C1, Figure 4.4). 

Mitochondria can however undergo fusion and fission events  (Wiederkehr and Wollheim, 2006) 

resulting in what appears to be a range of dynamic shapes that are referred to as ‘branch-like 

structures’. Mitochondria resulting from fusion and fission events appear to have a similar range of 

sub-volumes box sizes, (~ 600 nm x 600 nm x 600 nm) and were assigned to Mitochondria Class 2 

(MC_C2, Figure 4.4). Other mitochondria were considerably larger and varied in their diameter 

(from 900 nm to 2000 nm) compared to MC_C2 (~520-850 nm). They were assigned to 

Mitochondria Class 3 (MC_C3, Figure 4.4).  
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Figure 4.4 Image classes for mitochondria. 

Mitochondria show three groups of 

significantly different appearances. Class 1 

contains ‘Simple’ spherical mitochondria. 

Class 2 contained ‘Branch-like structure’ 

mitochondria that are similar in size to class 1. 

Class 3 contained elongated mitochondria. 

Scale bars: 100 nm.     

MC_C1 

Simple, free 

MC_C2 

Branch-like structure, small 

 

 
 

 

 

MC_C3 

Branch-like structure, complex, large 
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4.2.1.3 The Golgi apparatus  

In terms of diabetes, the Golgi apparatus stacks are involved in transporting insulin after the protein 

is synthesised on the rough endoplasmic reticulum (Marsh et al., 2001a, van Meel and 

Klumperman, 2008). The Golgi apparatus (or Golgi complex) consists of a stack of cisternae. 

Typically each Golgi apparatus consists of about 5 to 7 cisternae. Golgi apparatus structures that 

were relatively small in terms of sub-volume XYZ 3-Dimension sizes (X: 428-1075 nm, Y: 428-

1075 nm and Z: 535-749 nm) were classified as Golgi Apparatus Class 1 (GA_C1) and Golgi 

Apparatus Class 2 (GA_C2). Classes 1 and 2 differ in that the cisternae of Class 1 are ‘smoother’ 

than those of Class 2 (Figure 4.5). ‘Smoother’ refers to cisternae membranes being almost linear in 

their long axis while ‘rougher’ refers to more ‘irregular shapes’ of cisternae membrane (refer to 

images of raw data in Figure 4.5, marked with white arrows and red arrows respectively). Larger 

Golgi complexes were also observed. Their cisternae are not only rougher than in Class 1 and Class 

2 but they also have more complex structures which appear to exhibit vesicle budding. These larger 

Golgi complexes were assigned to Golgi Apparatus Class 3 (GA_C3). The cisternae were typically 

wider (up to 70 nm), and/or longer (between 1700 nm to 2500 nm), compared to those of smaller 

Golgi stacks (10 nm to 30 nm width and 400 nm to 1000 nm length). As the cisternae stacks of 

GA_C3 were often ‘broken’ into a number of cisternae membranes in the cross-sectional/2D image 

slices, this increased the number of cisternae membranes in the stack to be segmented (i.e. ~ 7 

cisternae membranes to 20 membranes per image slice).  

 

The trans-Golgi Network (TGN) is of particular importance as this is the site where the insulin is 

thought to be sorted into vesicles. The TGN also contains processing enzymes and after budding 

from the Golgi apparatus will mature into vesicles in which pro-insulin is processed into insulin and 

stored in preparation for regulated secretion (van Meel and Klumperman, 2008, Emr et al., 2009). 

This is thought to influence the Golgi appearance. For example GA_C3 has more budding vesicles 

and neighbouring vesicles (Figure 4.6, marked with red box) as compared to smaller Golgi stacks 

(i.e. Golgi apparatus Class 1 and 2). As seen in the same figure, the difference between Class 1 

(yellow box) and Class 2 (blue box) is where the cisternae in Class 2 are rougher than Class 1. Class 

2 also shown vesicle buds but in smaller amounts compared to Class 3.   
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Figure 4.5 Image classes for the Golgi 

apparatus. 

Scale bar: 100 nm.      

GA_C1 

Individual, small, smooth 

GA_C2 

Individual, small, rough 
 

  

 

GA_C3 

Complicated with staining and vesicles budding 
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Figure 4.6 Examples of three image classes of the GA. 

Three types of the Golgi apparatus; GA_C1 (yellow), GA_C2 (blue) and GA_C3 (red). GA_C1 (yellow box) and GA_C2 (blue box) 

are ‘smaller’ than GA_C3 (red box) where both Golgi types have no or less neighbouring and budding vesicles.  

 

Table 4.1 lists key organelles sub-classes according to their image features and the numbers of sub-

volumes of each class are provided. Insulin granules recorded 3 sub-classes named as IG_C1 (96 

sub-volumes), IG_C2 (43 sub-volumes) and IG_C3 (18 sub-volumes). Mitochondria also listed 3 

sub-classes, MC_C1 (25 sub-volumes), MC_C2 (10 sub-volumes) and MC_C3 (156 sub-volumes). 

The Golgi apparatus also recorded 3 sub-classes according to their image features, they are GA_C1 

(10 sub-volumes), GA_C2 (9 sub-volumes) and GA_C3 (56 sub-volumes). Classification in this 

manner has resulted in sub-classified particle data sets which are structurally much more 

homogeneous. This in turn provides cleaner datasets for the optimisation of segmentation 
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parameters and to yield insights into the process of insulin granule formation and structural changes 

of mitochondria and Golgi apparatus.  

 

Table 4.1 Three sub-classes were assigned to each of key organelle; insulin granules, mitochondria and the Golgi apparatus.   

(A) 3 sub-classes of insulin granules; IG_C1 (represents immature insulin granules), IG_C2 and IG_C3 (represent different features 

of mature insulin granules). (B) MC_R1, MC_R2 and MC_R3, are 3 sub-classes for mitochondria. MC_C3 has recorded highest 

numbers of sub-volumes compared to other sub-classes. (C) Golgi apparatus, with complex cisternae stack and diverse cisternae 

membrane morphologies and sizes were classified into three significant image features classes, i.e. GA_C1, GA_C2 and GA_C3.  

(A) Insulin granules 

Image Class 

 

# Sub-volumes minX, maxX minY, maxY minZ, maxZ 

IG_C1 96 minX: 120 nm 

maxX: 250 nm 

minY: 142 nm 

maxY: 250 nm 

minZ: 110 nm 

maxZ: 250 nm 

IG_C2 43 minX: 181 nm 

maxX: 600 nm 

minY: 168 nm 

maxY: 600 nm 

minZ: 120 nm 

maxZ: 570 nm 

IG_C3 18 minX: 181 nm 

maxX: 588 nm 

minY: 168 nm 

maxY: 600 nm 

minZ: 120 nm 

maxZ: 570 nm 

(B) Mitochondria 

Image Class 

 

# Sub-volumes minX, maxX minY, maxY minZ, maxZ 

MC_C1  25 minX: 120 nm 

maxX: 400 nm 

minY: 195 nm 

maxY: 400 nm 

minZ: 185 nm 

maxZ: 400 nm 

MC_C2 10 minX: 220 nm 

maxX: 600 nm 

minY: 195 nm  

maxY: 600 nm 

minZ: 185 nm 

maxZ: 600 nm 

MC_C3 156 minX: 589 nm 

maxX: 1500 nm 

minY: 570 nm 

maxY: 1500 nm 

minZ: 550 nm 

maxZ: 1500 nm 

(C) The Golgi apparatus 

Image Class 

 

# Sub-volumes minX, maxX minY, maxY minZ, maxZ 

GA_C1 10 

 

minX: 170 nm 

maxX: 450 nm 

minY: 188 nm 

maxY: 500 nm 

minZ: 185 nm 

maxZ: 480 nm 

GA_C2 9 minX: 170 nm 

maxX: 500 nm 

minY: 250 nm 

maxY: 500 nm 

minZ: 297 nm 

maxZ: 480 nm 

GA_C3 56 minX: 681 nm 

maxX: 1200 nm 

minY: 449 nm 

maxY: 1200 nm 

minZ: 429 nm 

maxZ: 1100 nm 

 

 

In conclusion, this work has resulted in ~400 image stacks of the Golgi apparatus (75), 

mitochondria (191) and insulin granules (157) being subdivided into 3 sub-classes of insulin 

granule, 3 sub-classes of mitochondria and 3 sub-classes of the Golgi apparatus. Figures 4.2, 4.4 

and 4.5 present proposed sets of models of the structural transitions between these sub-classes 

respectively. Each sub-class type is now more structurally homogeneous providing test sets to 

evaluate parameter settings of the best processing pipeline strategies identified in Chapter 3.    

 

4.2.2 Parameter optimisation on each sub-class 

The aim of the next experiment is to identify the top three optimal segmentation protocols for the 9 

sub-classes shown in Table 4.1 (Section 4.2.1) which represent insulin granules (3 sub-classes), 

mitochondria (3 sub-classes) and the Golgi apparatus (3 sub-classes), without sacrificing the 

accuracy of contouring each of the sub-volumes within each class. Four sub-volumes were 
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randomly selected from each class. The mesh model of every sub-volume produced by manual 

segmentation had different contour volume (CV) and mesh surface area (MSA) values (Note: The 

importance of the CV and MSA values was discussed in Chapter 3, Section 3.3.4). For this 

experiment, CV and MSA values of every sub-class were averaged in order to calculate the mean 

value of CV and MSA of each respective sub-class. Then, the optimisation of parameter settings for 

all nine method flows was conducted.  

 

The MSA scoring system uses the value of mesh surface area that was calculated from the mesh 

model of both segmentations, i.e. manual (test model) and computational. A more detailed 

description of the MSA scoring method is described in (Chapter 3, Section 3.3.4). For sub-volumes 

for which more than 3 of the ‘best’ settings met the above requirements, the difference between 

MSA values of automated and manual segmentation was compared manually and the best 3 

selected. The process of refining these ‘best’ method settings continued until the rest of the sub-

class was accurately segmented using the same optimised settings of these 3 methods. The aim of 

this was to identify ‘standard’ method optimised settings that accurately segment all 4 sub-volumes 

of a given sub-class. This process was repeated for each sub-class. Ultimately, the ‘best’ settings of 

the top 3 methods have been identified in every sub-class.   

 

4.2.2.1 Insulin granules 

For sub-class 1 of insulin granules (IG_C1) all 9 method flows of every sub-volume achieved 

scores of 5 (refer to the example shown in Figure 3.14) indicating that the MSA were within 95% 

to 105% compared to their respective manual test models. The image features described for IG_C1 

are not complex and so the relatively straightforward identification of optimised settings was not 

unexpected. Of these, the best methods identified were M5 (3D Median filter followed by 

watershed and mathematical morphology algorithm), M8 (NAD filter followed by watershed and 

mathematical morphology algorithm) and M9 (Bilateral filter followed by watershed and 

mathematical morphology algorithm) (Figure 4.7A). Besides the fact that the organelle diameter of 

immature granules is smaller than that of mature granules, and generally they have similar 

diameter/size which is easy and fast for organelle extraction, the simple structure of the immature 

insulin core – normally shown as dispersed dots in lumenal space simplified parameter 

optimisation. M5, M8 and M9 were also identified as the 3 ‘best’ methods for all 4 representative 

sub-volumes of IG_C2 and IG_C3 (i.e. image classes for mature granules). With more complex 

characteristics (compared to IG_C1 or immature insulin granules) finding the ‘best’ segmentation 
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result with optimised settings for all 4 representative sub-volumes were more difficult and tricky 

(Figure 4.7B).  

 
Table 4.2 Analysis for the top 3 methods for insulin granule segmentation.  

M5 (3D median filter followed by watershed), M8 (non-linear anisotropic diffusion filter followed by watershed) and M9 (bilateral 

filter followed by watershed) were identified as the top 3 method flows for all insulin granules sub-classes. 

 Identification of optimised settings of each method flow and MSA Scoring 

Sub-

class 

Sub-

Volume 

M1 M2 M3 M4 M5 M6 M7 M8 M9 The best 3 

IG_C1 IG_C1A 5 5 5 5 5 5 5 5 5 M5, M8, M9 

IG_C1B 5 5 5 5 5 5 5 5 5 M5, M8, M9 

IG_C1C 5 5 5 5 5 5 5 5 5 M5, M8, M9 

IG_C1D 5 5 5 5 5 5 5 5 5 M5, M8, M9 

IG_C2 IG_C2A 4 4 4 4 4 4 4 4 4 M5, M8, M9 

IG_C2B 3 3 2 4 5 4 4 5 4 M5, M8, M9 

IG_C2C 4 4 4 4 4 4 4 4 4 M5, M8, M9 

IG_C2D 3 3 3 4 5 4 5 5 5 M5, M8, M9 

IG_C3 IG_C3A 2 2 4 4 4 3 4 4 4 M5, M8, M9 

IG_C3B 3 3 3 3 5 3 3 5 4 M5, M8, M9 

IG_C3C 3 4 4 4 4 3 4 4 5 M5, M8, M9 

IG_C3D 3 4 4 4 4 3 4 5 5 M5, M8, M9 

 

 

Since image features of IG_C2 and IG_C3 are different in some points (refer to Section 4.2.1, see 

Figure 4.2), different settings of the top 3 methods (i.e. M5, M8 and M9) were determined. 3 

identical method flows were identified as 3 best methods for all 3 sub-classes, IG_C1 (Figure 4.8 

panel A), IG_C2 (Figure 4.8 panel B) and IG_C3 (Figure 4.8 panel C) where M8 is the best, M5 

is the second best and M9 is the third best based on the conditions tested. Different image features 

described for these classes appear to affect the segmentation results. In particular the watershed 

algorithm and mathematical operations settings are different for Insulin Granules Class 1, 2 and 3, 

while settings of image filtration methods (NAD filter, 3D Median filter, and Bilateral filter) 

remained the same for all insulin granules classes.  
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Figure 4.7 Best methods with optimised settings for insulin granules.  

(A-D) Example of segmentation result of IG_C3A. A and B show 2 segmentation results given a score of 2. A is the result of Method 

1 (M1) using Gaussian filter followed by watershed segmentation. The yellow arrow shows the area of organelle membrane proximal 

to neighbouring compartment and corresponding trace deviation. B is the result of Method 2 (M2) using minimum filter followed by 

watershed segmentation. The blue arrow shows an example of ‘broken contours’. C-D is the examples of segmentation result scored 

5 using Method 8 (M8) (non-linear anisotropic diffusion filter followed by watershed). Contour (cyan) nicely traced on organelle 

membrane after applying watershed and mathematical morphologies function on the image. Scale bar: 100 nm.  
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Figure 4.8 (a) Comparison between manual tracing (red contours) and ‘best’ automated methods (cyan contours) on raw 

dataset (i.e. unfiltered). 

The optimal settings for the best filter identified for each sub-class are provided. Best methods assigned for insulin granules sub-

classes (IG_C1, IG_C2 and IG_C3) are identical; i.e. M8 (the best), M5 (second best) and M9 (third best). Each segmentation result 

scored 5, the highest score in MSA scoring system. Scale bars: 100 nm 
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Figure 4.9 (b) Comparison between manual tracing (red contours) and ‘best’ automated methods (cyan contours) on raw 

dataset (i.e. unfiltered). 

The optimal settings for the best filter identified for each sub-class are provided. Best methods assigned for insulin granules sub-

classes (IG_C1, IG_C2 and IG_C3) are identical; i.e. M8 (the best), M5 (second best) and M9 (third best). Each segmentation result 

scored 5, the highest score in MSA scoring system. Scale bars: 100 nm 
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4.2.2.2 Mitochondria 

Mitochondrial sub classes MC_C1, MC_C2 and MC_C3 differ in terms of image features, as 

described in Section 4.2.1. The diversity of mitochondrial shapes and conditions influenced the 

settings of automated segmentation methods in tracing such mitochondria ‘branch-like’ or 

‘elongated’ structure (Figure 4.9). Method flows M8 (the best), followed by M5 and M9 were 

identified as the top 3 method flows for class MC_C1 (panel A of Figure 4.10 a, b and c). They 

were selected based on mesh surface area (MSA) scoring system.  

 

For Mitochondria Class 2 (MC_C2) and Class 3 (MC_C3), the mitochondria shape is influenced by 

the opposing processes of mitochondrial fusion and fission (Huang et al., 2011). The sizes of 3-

Dimension (3D) sub-volumes (i.e. X x Y x Z) of mitochondria MC_C2 ranged from ~200 nm x 200 

nm x 200 nm to ~600 nm x 600 nm x 600 nm. For MC_C2, Method 8 (M8) (the best), followed by 

Method 5 (M5) and Method 9 (M9) with respective optimal settings have been identified to 

accurately segment these double-layered organelles (panel B of Figure 4.10 a, b and c).  

 

In contrast when either fusion or fission dominates, mitochondrial elongation or fragmentation is 

thought to occur (Huang et al., 2011) and these mitochondria were classified in the third 

mitochondria sub-class, i.e. MC_C3. The dynamic mitochondria ultrastructures may be involved in 

allowing mitochondria to interact with each other or other organelles through molecular interaction 

(Huang et al., 2011). The diameter of the longest axis for mitochondria MC_C3 was determined to 

be ~600 nm - 1500 nm. More discussion about key components of mitochondria that play important 

roles in mitochondrial functions and development could is found in (Youle and van der Bliek, 

2012).  Only 2 method flows, Method 8 (M8) (the best) and Method 5 (M5) with respective optimal 

settings were found to be best computational methods for sub-group MC_C3 (panel C of Figure 

4.10 a, b and c).  

 

The optimised settings of M5 and M8 for MC_C3 are different to the settings identified for MC_C2 

and MC_C1. For M5, the homogeneity filter in maprank function (CoAn Software) is ‘turned on’. 

While the K value of non-linear anisotropic diffusion (NAD) – image filter used in M8 for MC_C3 

– is higher. Both methods; Method 8 and Method 5, scored 5 in MSA scoring and were recorded as 

‘best methods’ for MC_C1 (panel A), MC_C2 (panel B) and MC_C3 (panel C) of Figure 4.10 a, 

b and c.  
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(A) Identification of optimised settings of each method flow and MSA Scoring 

Sub-

class 

Sub-

Volume 

M1 M2 M3 M4 M5 M6 M7 M8 M9 The best 3 

MC_C1 MC_C1A 4 3 3 3 5 3 4 4 5 M5, M8, M9 

MC_C1B 4 4 4 3 5 3 4 5 5 M5, M8, M9 

MC_C1C 4 4 4 3 4 3 4 5 4 M5, M8, M9 

MC_C1D 3 3 3 3 5 3 4 5 5 M5, M8, M9 

MC_C2 MC_C2A 4 5 5 5 5 4 5 5 5 M5, M8, M9 

MC_C2B 5 4 5 4 5 4 4 5 4 M5, M8, M9 

MC_C2C 4 4 5 4 5 5 4 5 4 M5, M8, M9 

MC_C2D 5 4 4 5 5 5 4 5 5 M5, M8, M9 

MC_C3 MC_C3A 5 4 3 4 5 3 4 5 3 M5, M8 

MC_C3B 4 4 4 4 5 4 4 5 3 M5, M8 

MC_C3C 4 4 3 4 5 4 4 5 4 M5, M8 

MC_C3D 5 4 4 3 5 3 3 5 3 M5, M8 
 

   
 

   
 

Figure 4.10 Best methods with optimised settings for mitochondria. 

(A) The list of best method flows for 3 sub-class of mitochondria. (B-E) Segmentation result of mitochondrion example, MC_C3A 

(with complete branching due to either fusion or fission). Red contours represent manual segmentation. Cyan contours represent 

computational segmentation (i.e. Method 5: 3D Median filter and watershed segmentation). From this example, the elongated shape 

changed from B to C. Yellow arrow in D shows the area where the density value is different with mitochondrion marked 1 and 2. 

This information (i.e. mean density) affects the computational segmentation to determine the region of interest (i.e. region 1 and 2 in 

D and E) to be segmented. Scale bar: 200 nm. 
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Figure 4.11 (a) Optimised settings for different mitochondria classes. 

Noted that the ‘I’ function in watershed algorithm is turned on in order to segment an electron dense organelle, mitochondria. 

MC_C1, MC_C2 and MC_C3 have identical best method flows; M8 (the best), M5 (the second) and M9 (the third). Every example 

has shown scored 5, the highest score of MSA scoring system, except M9 for MC_C3 (score 3). Red contours represent manual 

tracing and cyan represent automated segmentation methods. Scale bars: 100 nm 
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Figure 4.12 (b) Optimised settings for different mitochondria classes. 

Noted that the ‘I’ function in watershed algorithm is turned on in order to segment an electron dense organelle, mitochondria. 

MC_C1, MC_C2 and MC_C3 have identical best method flows; M8 (the best), M5 (the second) and M9 (the third). Every example 

has shown scored 5, the highest score of MSA scoring system, except M9 for MC_C3 (score 3). Red contours represent manual 

tracing and cyan represent automated segmentation methods. Scale bars: 100 nm 
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Figure 4.13 (c) Optimised settings for different mitochondria classes. 

Noted that the ‘I’ function in watershed algorithm is turned on in order to segment an electron dense organelle, mitochondria. 

MC_C1, MC_C2 and MC_C3 have identical best method flows; M8 (the best), M5 (the second) and M9 (the third). Every example 

has shown scored 5, the highest score of MSA scoring system, except M9 for MC_C3 (score 3). Red contours represent manual 

tracing and cyan represent automated segmentation methods. Scale bars: 100 nm 
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4.2.2.3 The Golgi apparatus   

The Golgi apparatus (GA) or Golgi complex consists of stack of cisternae. Each slice of the GA 

sub-volumes not only includes a number of cisternae membranes (4-13 cisternae per GA) but also 

‘free’ vesicles (i.e. general vesicles and/or transport vesicles). When observed, the distance between 

each cisternum is from 5 nm to 10 nm. Thus the minimum distance between each cisternum is set to 

10 nm which then prevent those being segmented. While those ‘unwanted’ vesicles could be 

automatically deleted (due to optimising settings for accurate segmentation).  

 

Golgi apparatus structures with smooth cisternae membranes (GA_C1) exhibited consistent 

distances (6 – 10 nm) membranes. Their GA sub-volumes were accurately segmented with 3 best 

method flows; Method 8 (M8), Method 5 (M5) and Method 9 (M9) (Figure 4.11 and panel A of 

Figure 4.12 a and b). Each of them scored 5 in MSA scoring. Rougher cisternae membranes with 

similar cisternae length and width describe the Golgi apparatus structures in class GA_C2 for which 

similar best method flows were identified; M8 (the best) M5 (second best) and M9 (third best) 

(Figure 4.11 and panel B of Figure 4.12 a and b). M8 and M5 scored 5 while M9 score 4. 

Visually, M9 is not acceptable for GA_C2 as it failed to segment accurate cisternae membranes. 

Thus only 2 best method flows presented for GA_C2. GA_C3 have similar image features to 

GA_C2 in terms of cisternae roughness but the length and the width amongst its cisternae were 

varied. Also the appearance of vesicles budding in some cisternae stacks made the Golgi stack more 

complex. Given the complexity of image features in this sub-class, identifying an optimal method 

for this sub-class was the most challenging. Like GA_C2, GA_C3 has also recorded 2 best 

methods; M8 and M5 where each scored 5 in MSA scoring (Figure 4.11 and panel C of Figure 

4.12 a and b).    

 

When observed, the GA_C1 has recorded same settings of watershed algorithm and mathematical 

operations (panel A of Figure 4.12 a and b) for all 3 method flows. It shows that the Golgi 

apparatus of the sub-class ‘simple’ and less complex than the other 2 classes to be segmented. High-

complexity of image features of the other 2 sub-classes (Class 2 and Class 3) decreased the signal to 

noise ratio of the Golgi apparatus which influenced the accuracy of segmentation results of other 

methods. Therefore 2 best methods with optimal settings for each class are acceptable. The rest of 

the method flows (i.e. Method 1, Method 2, Method 3, Method 4, Method 6, Method 7 and Method 

9) however have scored 3 and below (according to MSA scoring) for all 4 representative sub-

volumes and therefore were excluded from the ‘best’ method set. 
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(A) Identification of optimised settings of each method flow and MSA Scoring 

Sub-

class 

Sub-

Volume 

M1 M2 M3 M4 M5 M6 M7 M8 M9 The best 3 

GA_C1 GA_C1A 3 3 3 3 5 4 4 5 3 M5, M8 

GA_C1B 3 3 3 3 5 3 3 5 3 M5, M8 

GA_C1C 4 4 3 2 5 3 3 5 4 M5, M8 

GA_C1D 3 3 3 3 5 3 3 5 3 M5, M8 

GA_C2 GA_C2A 4 3 3 3 5 4 3 4 4 M5, M8 

GA_C2B 3 3 3 3 4 4 2 5 3 M5, M8 

GA_C2C 3 4 3 2 5 3 3 5 4 M5, M8 

GA_C2D 3 3 3 3 4 3 3 5 4 M5, M8 

GA_C3 GA_C3A 3 3 3 2 3 3 3 5 4 M8 

GA_C3B 4 3 2 2 4 3 3 4 3 M8 

GA_C3C 3 3 3 2 4 3 3 4 3 M8 

GA_C3D 3 3 2 2 3 3 3 4 3 M8 
 

   
 

Figure 4.14 Best methods identified for all 3 sub-classes of the Golgi apparatus. 

(A) List of best methods for the Golgi apparatus Class 1, 2 and 3. (B) An example of GA_C3. (B1) GA_C3A was filtered using non-

linear anisotropic diffusion prior to segmentation with watershed algorithm. (B2) Red contours represent manual tracing, cyan 

represent Method 8 (M8) which scored 5 according to MSA scoring.  
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Figure 4.15 (a) Optimised setting for different classes of the Golgi apparatus. 

Red contours represent manual tracing and cyan represent automated segmentation methods. All 3 method flows assigned as the best 

3 methods for GA_C1 has recorded the same settings of watershed and mathematical operations. Different optimal settings of 

watershed and mathematical operations were identified for each best method assigned for GA_C2 and GA_C3. Scale bars: 100 nm. 
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Figure 4.16 (b) Optimised setting for different classes of the Golgi apparatus. 

Red contours represent manual tracing and cyan represent automated segmentation methods. All 3 method flows assigned as the best 

3 methods for GA_C1 has recorded the same settings of watershed and mathematical operations. Different optimal settings of 

watershed and mathematical operations were identified for each best method assigned for GA_C2 and GA_C3. Scale bars: 100 nm. 

 
 

4.2.3 Segmenting the rest of the sub-volumes of each organelle sub-class with respective 

optimised method settings  

Section 4.2.2 defined the ‘best’ method flows for every key organelle sub-class, using a small 

evaluation set of four test volumes for each of the nine identified sub-classes. The ‘best’ method 

flows for each sub-class and their individual optimal parameter settings are outlined in Figures 4.8, 

4.10 and 4.12. To demonstrate that these best methods are feasible for segmenting other sub-

volumes of the same sub-classes, the experiment was continued on the remaining organelle sub-

volumes within each sub-class, using the most feasible method flow with individual optimal 

settings. If our hypothesis was correct – that the optimal method flow and method parameters could 

be determined from the image characteristics of the sub-volumes, then the remaining sub-volumes 

within each class should yield a high percentage of satisfactory segmentation results with no further 

parameter optimisation.  
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4.2.3.1 Insulin granules 

Insulin granules yielded the highest percentage of score 5 ratings. Indeed 95% of the 157 sub-

volumes were ranked as 5 (Table 4.3). In IG_C1, all 96 sub-volumes scored 5. In comparison 93% 

of the IG_C2 scored 5 and 87% of the IG_C3 scored 5.  

 

4.2.3.2 Mitochondria 

About 90% of mitochondria in 2 sub-classes (MC_C1 and MC_C2) produced an acceptable 

segmentation results. In comparison, 125 of 156 MC_C3 sub-volumes yielded scores of 5. In total, 

82% of the 191 mitochondria sub-volumes were ranked as 5.  

 

4.2.3.3 The Golgi apparatus 

The Golgi apparatus presented the lowest percentage of score 5 ratings with the segmentation 

results for 84% of the 75 sub-volumes identified as acceptable. 80% of the 10 sub-volumes of 

GA_C1 scored 5, 89% of the 9 sub-volumes of GA_C2 scored 5, while only 79% of the 56 sub-

volumes of GA_C3 scored 5.  

 

Table 4.3 Percentage of acceptable results (i.e. score 5) using the best method flow; i.e. Method 8 (M8) of each key organelle 

sub-class. 

‘Acceptable results’ is also termed as ‘high-quality results’. IG recorded 95% of the results categorised as ‘high-qualities’ as the 

mesh models of the sub-volumes scored 5 in MSA scoring. MC and GA have similar percentage of acceptable results (i.e. ~80%). 

These percentages show that M8 is practically feasible to segment various image features of cellular compartments. 

(A) Sub-groups (B) Total sub-

volumes 

(C) Sub-

volumes 

(acceptable) 

(D) Sub-

volumes 

(unacceptable) 

(E) % acceptable 

results  

(F) Best method 

IG_C1 96 96 0 100% Optimised M8 

IG_C2 43 40 3 93% Optimised M8 

IG_C3 18 13 5 87% Optimised M8 

Total 157 149 8 % high-quality results for IG: 95% 

MC_C1 25 23 2 92% Optimised M8 

MC_C2 10 9 1 90% Optimised M8 

MC_C3 156 130 26 83% Optimised M8 

Total 191 162 29 % high-quality results for IG: 85% 

GA_C1 10 8 2 80% Optimised M8 

GA_C2 9 8 1 89% Optimised M8 

GA_C3 56 44 12 79% Optimised M8 

Total 75 60 15 % high-quality results for IG: 80% 

 

Sub-classification of insulin granules, mitochondria and the Golgi apparatus has allowed sub-

volumes of sufficient uniformity of image properties to be obtained, such that these can be 

segmented in an automated manner using a single method flow. The importance of this is that this 

work provides a basis for more rapid semi-automated segmentation at least for the organelles 
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imaged under these conditions. These curated sub-class datasets also provide the bases for more 

detailed morphological characterisation and typing, which is both important from a biological 

perspective and for the mathematical segmentation. It also provides structural information for the 

typing of organelle sub-classes and the basis for more detailed morphological characterization to 

facilitate automatic segmentation and annotation. To conclude, it has been shown that by sub-

classifying according to organelle, organelle complexity and other image characteristics, accurate 

segmentation could be done at high proportion of the organelles automatically. 

 

4.2.4 Discussion 

With ongoing development of computational segmentation and visualisation methods, e.g. image 

denoising algorithms, boundary- and region-based segmentation procedures, 3-dimensional image 

modelling methods etc., a high-fidelity cellular tomography segmentation pipeline – without any 

sacrifice of 3-dimensional surface model accuracy and employing only one single parameter setting 

(i.e. parameter free) is very close to achievable/ accomplishable. Heavy noise and the unique 

characteristics of different organelles remain the persisting problems that influence segmentation 

accuracy with standard optimised settings. 

 

A study on different segmentation methods including a number of image filtration and segmentation 

algorithms, different combination of those automated and semi-automated tracing processes and test 

of the efficiency of mathematical morphologies on 3D mesh surface models has yielded a new 

pipeline developed for the automated segmentation (Chapter 3). Together with the newly 

developed mesh surface area (MSA) scoring system, this pipeline has facilitated the study 

conducted here: to investigate the parameter optimisation of nine combination method flows that 

employed nine different image denoising algorithms, and the effectiveness of these in tracing 

different types of organelles. To further assess the parameter optimisation of these methods flows; 

image characteristics of these key organelles or cellular compartments were investigated. Overall, 

novel algorithms presented in Chapter 4 could have emerged that somehow would have 

outperformed the sum of previously existing algorithms. These tools could have led to novel 

biological findings.  

 

The dataset collected here represents one of the most detailed analyses of GA, MC and IG in 3D. It 

therefore provides a useful reference set for classification of the organelles. The dynamic 

conversion between the various organelle morphologies is shown in Figures 4.2, 4.4 and 4.5. Based 
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on my experiments, there are significant findings established where more than 90% of 423 sub-

volume datasets, that were sorted into sub-groups based on their respective image characteristic, 

were reported to have high-quality segmentation results (i.e. according to the MSA scoring they 

have scored between 5 to 3, i.e. a segmentation accuracy within +/- 15% of the manually 

traced/ground truth dataset). This demonstrates that the assigned standard sets of optimal parameter 

settings could be applied on various organelles with respective/similar image characteristics. 

Another significant finding was that Method 8 (M8) consistently featured amongst the best of the 

nine method flows evaluated here. M8 is the combination of optimised NAD filter followed by 

optimised watershed and mathematical morphology algorithm. The reason this combination of 

processes worked best particularly at establishing object’s membranes for accurate segmentation 

with minimal broken contours and/or over segmented contours. This has demonstrated high quality 

of traced contours compared to the gold standard or reference contour set and improved the contour 

selection process for selecting the correct contour(s) and removed the unwanted contour(s) 

mathematically.   

 

4.2.5 Future plan 

4.2.5.1 Improving the Golgi apparatus scoring for improved segmentation results  

As reported in Section 4.2.2 – most of the GA sub-groups only achieved two standard sets of 

optimal settings. As these standard settings showed promising segmentation results, I believed that 

other method flows are also able to do the same; i.e. improve the scoring on every optimal setting of 

method flows. This could be achieved when the amendment is made within the sub-grouping 

datasets such as adding other characteristic values for sub-classifying this complex organelle to 

improve parameter settings optimisation. By doing this, other segmentation method flows would 

effectively identify the true cisternae membranes and correctly trace them. Thus this would produce 

more ‘standard’ sets of optimised settings and also increase the ‘score’ amongst different method 

flows.    
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5.1 Introduction 

 

Chapters 3 and 4 have introduced and discussed the development of a workflow designed to 

expedite the segmentation of tomographic data, and demonstrated the implementation of this using 

real, high-resolution tomographic datasets. While these experiments were ongoing, Ali et al. (Ali et 

al., 2012) reported the implementation of a new 3-dimensional (3D) bilateral edge detection (BLE) 

filter, based on an earlier 2D implementation (Pantelic et al., 2006, Pantelic et al., 2007). The 3D 

BLE (Ali et al., 2012), potentially offers a parameter free edge-detection approach that also has the 

potential to semi-automate tomography.  

 

This potentially powerful tool was reported to be comparable in performance to current leading 3D 

filters, the Canny edge detector (Canny and John, 1986, Sonka et al., 1999, Jin, 2006) and the 

pseudo 3D recursive filter (Monga et al., 1991, Deriche et al., 1988). Ali et al. demonstrated that it 

was able to detect edges as little as 2 pixels wide both for organellar and macromolecular 

segmentation and so may prove to be a valuable tool for accurate sub-cellular segmentation (Ali et 

al., 2012). Even though 3D BLE proved be useful for individual macromolecule detection within 

3D volumes, discontinuities amongst contours of subsequent slices can lead to inaccurate 3D model 

contours. In Ali et al. (Ali et al., 2012) these 3D discontinuities were improved by Bspline 

interpolation (Figure 5.1). The method’s efficiency has demonstrated possibilities for further 

downstream processing such as annotation of 3D structural complexity at the sub-cellular level and 

sub-tomogram averaging. Due to the reported performance of the 3D BLE filter (Figure 5.2) its 

performance is here tested on the same tomographic data sets used in Chapters 3 and 4.   
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Figure 5.1 Segmentation and extraction of molecular contours from electron tomography.  

Comparing segmentation results of 3D BLE, 3D recursive and 3D Canny filters. (A) 2D section of unprocessed tomogram. Dark 

objects are macromolecular assemblies. Isosurface rendering of randomly chosen single particle highlighted in selected number of 

orientations around y-axis in the inset (A). (B) 3D surface rendering of results obtained from application of the 3D BLE filter. After 

applying Bspline, discontinuities of particles contours are significantly improved where the surface rendering of 3D BLE shows 

individual macromolecules are detected and sufficiently extracted as compared (C) 3D recursive-filtered sub-volume and (D) 3D 

Canny-filtered sub-volume. Both (C) and (D) show respective surface rendering models. 
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Figure 5.2 Segmentation of cellular tomographic reconstruction (previous page). 

(A) A tomographic slice of a cellular reconstruction extracted from a tomogram used and reported in Marsh et al., 2001 (Marsh et al., 

2001a). (B) Region that has been demarcated from (A) was manually segmented using IMOD. Different colours were used to draw 

organelles contours representing different organelle types and is very useful for analysis purposes of surface-rendered 3D model 

shown in (C). (D) 3D BE filtered tomogram of the same tomogram in (A). (E) Manual colour coding was applied on the contours 

automatically detected by 3D BLE. The same colour coding as shown in (B) was used. (F) Surface-rendered 3D model of 3D BLE of 

the same region shown in (B) and (E). (G) An example of one of the complex organelles, mitochondrion. (H) Surface-rendered 3D 
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model of mitochondrion architecture of (G) shows the inner (purple) and outer (green) membranes detected by 3D BLE algorithm. 

Source: (Ali et al., 2012).  

 

5.2 Results  

 

5.2.1 Automated segmentation of organelles within a whole sub-cellular tomogram  

To evaluate the performance of 3DBLE, one of the sub-regions of a large cellular tomogram 

(Figure 5.3) from Chapter 3 was randomly selected. There are three parameters used for 3D BLE, 

sigma 1, sigma 2 and threshold value. Sigma 1 (σ1; i.e. significant weights), is used to determine 

the size of neighbourhood for the calculation of the normalised photometric score. These significant 

weights are fixed standard deviation of 2 pixels (for 2D implementation of BLE) (Pantelic et al., 

2007) and 2 voxels (for 3D implementation of BLE) (Ali et al., 2012). To trace edges and identify 

significant discontinuities of edges the photometric score is calculated and then normalised. The 

photometric parameter, defined as sigma 2 (σ2), controls photometric disqualification. It was used 

to demonstrate the filter’s ability in suppressing noise during edge detection (Pantelic et al., 2007). 

Threshold value (t/h) is able to selectively extract specific features to enhance edge detection. 

Images were pre-filtered with optimised (one pass) Gaussian filtration and (three passes) iterative 

median filtration (Ali et al., 2012) prior to edge detection and segmentation using 3D BLE.  

 

It was suggested by the developer that rather than using the 3D BLE in a fully automated fashion, 

instead three different sets of settings were suggested for the three tuneable parameters (sigma 1: 

σ1; sigma 2: σ2; threshold: t/h) within the 3DBLE interface (Ali et al., 2012). The application of the 

3D BLE will produce three sets of suggested optimised segmentation results. The idea to have 

different tracing results is to allow users to manually or mathematically select the ‘best’ result 

amongst the three for particular dataset(s) – depending on the user’s datasets.  

 

The tomographic volume of this project was automatically segmented with these settings. The best 

one was judged qualitatively and analysed (Figure 5.4). Contours were converted into a meshed 

model file for 3D evaluation as well as for MSA scoring purposes. As a result, green contours 

(Figure 5.5) directly derived from the white edges in Figure 5.4 were produced. Sets of green 

contours are overlaid on the real dataset to highlight the accuracy of the traced contours. Yellow 

arrows marked in Figures 5.4 and Figure 5.5 show several examples of broken edges.     
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Figure 5.3 Cellular tomogram used for this study, showing an area of complex cellular environment. 

The tomogram was filtered using one pass of a Gaussian with sigma 2 and three passes of Median filtering - as suggested in Ali et al. 

(Ali et al., 2012). For the purpose of this experiment only a part of this tomogram is used – i.e. region is demarcated by red box. The 

extracted region was chosen to include test organelles consistent with other sections of this thesis - the Golgi apparatus, 

mitochondria, mature insulin granules, immature insulin granules, and also contains examples of other sub-cellular compartments.      
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Figure 5.4 Result of applying the 3DBLE (default settings) to the sub-tomogram extracted from Figure 5.3.   

High-frequency of white contours represents every contour in the volume detected by the 3D BLE algorithm. As can be seen from 

this result, ‘manual’ identification of contours which represent ‘the organelle of interest’ is necessary. Yellow arrows show examples 

of ‘broken contours’ identified on the contours of organelle of interest. The volume shown here corresponds to the region bounded by 

the red box in Figure 5.3.  
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Figure 5.5 A representation of contours after imodauto function presenting white contours in Figure 5.4. 

Yellow arrows show the ‘broken contours’ (same area shown by the yellow arrows in Figure 5.4).  

 

‘Broken contours’ can lead to inaccurate meshed models (Meyers et al., 1992) and so Bspline 

interpolation was used – as proposed in Ali et al. 2012 – to complete the edges detected by 3D BLE. 

The red bounding box in Figure 5.4 (the same region boxed in Figure 5.5) highlights two ‘objects’ 

(two insulin granules) of different intensity values. Even though the Bspline function has been 

applied to reduce discontinuity problems, it can be seen here that the performance of the Bspline 

function is dependent on the object (Figure 5.6) – i.e. one insulin granule (demarcated by the red 
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box) was improved but the connectivity of contours for the other insulin granule (demarcated by the 

blue box) remained poor.  

 

  

Figure 5.6 Surface-rendered 3D model of sub-region demarcated in red box in Figure 5.5. 

(Left) 3D surface of sub-region after applying 3D BLE followed by Bspline interpolation (Ali et al., 2012). (Right) Small particles 

have been removed by turning on the ‘delete small pieces’ function in IMOD. Eliminating these ‘extra pieces’ improves volume 

visualisation, but not the accuracy of contour segmentation. The volumes shown here correspond to the regions bounded by the red 

boxes in Figures 5.4 and 5.5. 

 

5.2.2 Automated segmentation of organelles extracted as small sub-volumes using 3DBLE 

The objective of this experiment was to test whether, by using a similar approach to that outlined in 

the Chapters 3 and 4, the segmentation results obtained using the automated 3D BLE could be 

improved such that they were comparable to the ground truth data sets and/or comparable/superior 

to the performance of the previous segmentation method flow by processing individually extracted 

organelle sub-volumes. To achieve this, a subset of the dataset utilised in the preceding chapters, 

comprising 50 organelles of interest that were representative of the three key organelles (the Golgi 

apparatus, mitochondria and insulin granules) and each of the three organelle complexity levels, 

were segmented using the 3D BLE and the results compared to the those obtained by manual 

tracing. 

 

The automated process of 3D BLE filtering followed by Bspline interpolation produced hundreds to 

thousands of contours for each sub-volume as compared to the number of ‘manual’ contours which 

ranged from 1x10
2 

to 1x10
7
, depending on image characteristics. This over-segmentation is likely 
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due to two key problems; the existence of unwanted contours and the disconnectivity of edges 

defining true organelle contours. First, the ‘unwanted’ contours (i.e. the contours of neighbouring 

organelles and/or unidentified objects) were manually deleted. Only contours of interest – 

representing the organelle membranes) – were retained and meshed. The new mesh models of 3D 

BLE (i.e. that represented only the target organelle membrane) were compared to the respective 

mesh models obtained previously by manual segmentation prior to scoring (Table 5.1). For the sake 

of comparison, scores were also given to mesh models of 3D BLE prior to post-processing (i.e. 

manual deletion of unwanted contours). ‘Result 1’ represents the score for the 3D BLE result before 

post-processing or removing unwanted contours (i.e. original result of default settings of 3D BLE) 

and ‘Result 2’ represents the score of 3D BLE result after post-processing. For scoring purposes, 

meshed model of every sub-volume were created using, imodauto – a function in IMOD.  

 

The observation is that the results were unacceptable and that across the board. The MSA values 

were higher for the 3D BLE processed data than the ground truth sets. This is most likely due to 

high levels of noise which led to false edge detection, increasing the number of contours where this 

in turn have resulted in a higher mesh surface area (MSA). Post-processing removed the majority of 

these unwanted contours and the score (Result 2) of some sub-volumes increased (as compared to 

respective Result 1). Unfortunately however, Result 2 remained largely unsatisfactory. The highest 

score achieved by a single insulin granule sub-volume was score 4. The rest scored 3 and below. A 

score of 0 indicates an MSA value of 3D BLE that is more or less than 125% or 75%, respectively, 

of the MSA value recorded for the ground truth dataset. Middle slices of representative sub-

volumes are shown in Figures 5.7-5.9. The green contours represent those detected by the 3D BLE 

and red contours represent the manual tracing results. 
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Table 5.1 Scores for individual filtering of boxed out organelles of interest GA (Golgi apparatus), MC (mitochondria) and IG 

(insulin granules).  

Result 1 is the score of segmentation result before any post-processing (i.e. manual removing unwanted contours) and Result 2 is the 

score of segmentation result after removing unwanted contours. The identification number of respective sub-volume was written on 

each organelle type. This is used for experiment purpose only.   

GA Result 1 Result 2 MC Result 1 Result 2 IG Result 1 Result 2 

GA1 0 0 MC1 0 2 IG1 2 4 

GA2 0 0 MC2 0 1 IG2 0 2 

GA3 0 0 MC3 0 1 IG3 0 2 

GA4 0 0 MC4 0 1 IG4 0 1 

GA5 0 0 MC5 0 0 IG5 0 3 

GA6 0 0 MC6 0 0 IG6 0 2 

GA7 0 0 MC7 0 0 IG7 0 2 

GA8 0 0 MC8 0 0 IG8 0 1 

GA9 0 0 MC9 0 0 IG9 0 1 

GA10 0 0 MC10 0 0 IG10 0 1 

GA11 0 0 MC11 0 1 IG11 0 1 

GA12 0 1 MC12 0 1 IG12 0 1 

 MC13 0 1 IG13 0 1 

MC14 0 2 IG14 0 0 

MC15 0 2 IG15 0 0 

MC16 0 1 IG16 0 1 

MC17 0 0 IG17 0 2 

MC18 0 1 IG18 0 0 

 IG19 0 0 

IG20 0 1 

 

Acceptable: 0 Acceptable: 0  Acceptable: 0  

Unacceptable: 12 Unacceptable: 18 Unacceptable: 20  
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5.2.2.1 The Golgi apparatus (GA) 

Visual inspection of (Figure 5.7 B) shows that the contours suffer from ‘broken’ cisternae 

membranes yielding an increased number of contours compared to the truth data. This example has 

an MSA score of 0 following post-processing (score 1).  

 

  

 

Figure 5.7 3D BLE segmentation on the Golgi apparatus. 

This sub-volume has 120 image slices. The ground truth data 

recorded the total number of contours in this example volume is 

586 contours and total MSA is 388,946 (~4x105). (A) The result 

of automated segmentation using 3D BLE. Total number of 

contours is 14,234 contours and total MSA is more than 2x107. 

After post-processing (B), non-related contours were manually 

removed. Total number of contours reduced to 7,156 contours 

and total MSA reduced to about 8x106. (C) Visual comparison 

between 3D BLE (green) and manual segmentation (red). The 

score of this particular example before and post-processing is 

score 0 and score 1 respectively.      

 

 

A B 

C 

MSA: ~4x105 

MSA: ~8x106 
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5.2.2.2 Mitochondria 

Results of the 3D BLE analysis for mitochondria gave a range of scores from 2 to 1. Scores in this 

range are considered not acceptable (according to our MSA scoring system). This claim is 

supported by the visual examples presented in Figure 5.8. High-resolution tomograms have proven 

able to represent a high quality of cellular compartments particularly for 3D structure studies 

(Marsh et al., 2005). However 3D BLE was computationally designed to be very sensitive to 

density differences of organelles membrane. It appears that variation in density levels throughout 

the mitochondria causes over-segmentation and that 3D BLE interprets the contours as ‘small 

particles’ distributed along the true contour – these can be considered as ‘broken contours’. Like the 

GA, the higher numbers of contours significantly influences the total contour volume (CV) and in 

turn influences the value of the mesh surface area (MSA).  

 

  

 

Figure 5.8 3D BLE segmentation on mitochondria.  

This sub-volume example has 177 image slices. The ground 

truth data recorded the total number of contours in this example 

volume is 228 contours and total MSA is 8,612. Result of 3D 

BLE (A) produced and recorded 27658 contours and after post-

processing (B) the number of contours reduced to 2782, while 

its total MSA is 10,167. Comparison with manual segmentation 

(red contour) shows that the 3D BLE detects the contour of 

double-layered mitochondrion however the result is 

unsatisfactory where the number of broken contours increase 

significantly (C). This example has a score of 1 (after post-

processing).  

 

 

A B 

C 

MSA: ~9x103 

MSA: ~10x103 
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5.2.2.3 Insulin granules 

In contrast to the Golgi apparatus and mitochondria, insulin granules yielded better scores (i.e. 

between score of 5 to 2). The example in Figure 5.9 shows contours detected for a mature granule 

belonging to image class 2, i.e. the crystal is free in the membrane lumen. The organelle boundary 

was nicely traced by 3D BLE and has an MSA score of 5; visually demonstrate proximity with 

manually traced contours (red lines).  

 

  

 

Figure 5.9 3D BLE segmentation on insulin granule.  

This insulin granule volume has 87 image slices. The ground 

truth data recorded the total number of contours in this 

example volume is 87 contours and total MSA is 230. (A) 

Result of 3D BLE recorded 1397 contours and 2991 as total 

MSA. After post-processing (B) number of contours reduced 

to 87 contours and total MSA is 268 - that is very close to 

ground truth total MSA, 288. As compared with manual 

segmentation (red contour), results of 3D BLE is significantly 

acceptable (despite the ‘jagged’ green line (C), this example 

has a score of 5.     

 

 

 

A B 

C

C 

MSA: 230 

MSA: 268 
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Overall, the 3D BLE segmentation results suffered from over-segmentation, as the filter operating 

in automated mode appeared to be too sensitive to edges within the sub-volume. Presumably, this 

may be as the automated settings of 3D BLE are suggested particularly for segmenting 

macromolecular structures (Ali et al., 2012, Pantelic et al., 2007). As the organelles of high 

resolution dataset (example shown in Figure 5.3) seems to be complex and congested, and in order 

to more equitably compare the 3D BLE to the processes developed in Chapters 3 and 4, sub-

volumes were extracted in order to examine the outcomes when the 3D BLE was applied to 

extracted organelle sub-volumes in isolation. With the same settings (i.e. automatic 3D BLE 

settings), sub-volumes suffered significantly from broken contours, particularly the Golgi apparatus 

and mitochondria. As a consequence, a large number of false contours were generated, leading to an 

increasing in total surface area of the contours. To improve such discontinuities problems, 

optimising 3D BLE parameters was implemented.  

 

5.2.3 Optimising settings of 3D BLE for segmentation of different cellular compartments  

In an effort to overcome the problem of broken contours and to further examine the effectiveness of 

the 3D BLE algorithm in segmenting membranes of complex cellular compartments, settings of 3D 

BLE were optimised for each object of interest (i.e. cellular organelle). There are three parameters 

in 3D BLE implementation; σ1, σ2 and t/h. The description on these parameters is detailed in 

Section 5.2.1. As σ1 is fixed value (Ali et al., 2012) thus no optimisation of this parameter in this 

experiment. Optimising parameter setting was focused on σ2 and t/h values. As σ2 controls 

photometric disqualification, it was optimised to demonstrate the filter’s ability in suppressing noise 

during edge detection (Pantelic et al., 2007). Another parameter in 3D BLE; threshold value (t/h) 

able to selectively extract specific features to enhance edge detection was also manually optimised.    

 

3D BLE procedure is very straightforward. However, it is difficult to predict the optimal 

parameters. The approach used for parameter adjustment was while the σ2 value is increased; the 

t/h value was kept constant and vice versa until the best combinations of settings was identified. On 

average, five to ten tuning operations were carried out for each sub-volume prior to selecting the 

best results (i.e. optimised 3D BLE setting). More tuning operations were needed on complex cases 

such as the Golgi apparatus. For initial comparison prior to selecting optimised segmentation 

results, visual comparison with respective manual tracing was performed on a slice by slice basis.  
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Following post-processing, the edges detected by 3DBLE were computationally modelled as 

contours using imodauto in IMOD (Kremer et al., 1996). The contours corresponding to unwanted 

objects were manually removed using the ‘eraser’ function in drawing tools of IMOD. When there 

only target contours remained in the volume, they were meshed with imodmesh in IMOD (Kremer 

et al., 1996). The value of total MSA for each contour set (i.e. each organelle sub-volume) was 

compared to the total MSA value of the ground truth data (i.e. manual segmentation) for each 

respective sub-volume. The difference between total MSA of 3D BLE and manual segmentation of 

each sub-volume was used for this numerical comparison and an MSA score (the implementation of 

the score procedure is detailed in Chapter 3) was calculated for each segmentation result. 

Optimising two main parameters of 3D BLE (i.e. σ2 and threshold value) significantly increased the 

quality of contour segmentation of complex cellular organelles. It also produced greater 

segmentation accuracy of each test data (i.e. 50 sub-volumes). More than 70% of the results are 

satisfactory that (i.e. ‘acceptable’ according to MSA scoring system). Overall, the contours 

corresponding to the organelle membranes were more accurately traced following parameter 

optimisation.  

 

5.2.3.1 Insulin granules 

Figure 5.10 demonstrates the processing insulin granules with the optimised BLE. The upper row 

of the figure shows all 20 sub-volumes used the same setting of sigma 1 (σ1) – that is used to 

determine the size of neighbourhood for the following edges tracing – as suggested; i.e. 2 voxels 

(Ali et al., 2012). Different combinations of sigma 2 (σ2) and threshold (t/h) value – used to trace 

edges, identify significant discontinuities of edges and to suppress noise – indicated that there is no 

specific mode to establish the optimised combination settings. Red contours demonstrate manual 

tracing and green contours represent the optimised 3D BLE segmentation results.   
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IG Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h 

IG_C1 IG_C2 IG_C3 

IG1 5 2 3.83 0.95 IG5 5 2 3.91 0.95 IG9 5 2 3.75 0.96 

IG2 5 2 3.84 0.95 IG6 5 2 3.91 0.95 IG10 5 2 3.79 0.96 

IG3 5 2 3.87 0.95 IG7 5 2 3.68 0.95 IG14 5 2 3.73 0.94 

IG4 5 2 3.90 0.95 IG8 5 2 3.75 0.95 IG15 5 2 3.76 0.94 

     IG11 5 2 3.79 0.96 IG16 5 2 3.78 0.95 

     IG12 5 2 3.73 0.96 IG17 5 2 3.79 0.97 

     IG13 5 2 3.74 0.96 IG18 5 2 3.70 0.99 

     IG19 5 2 3.70 0.91      

     IG20 5 2 3.73 0.90      

 

                 

 

 

 

Figure 5.10 Optimised settings of 3D BLE for insulin 

granules. 

Upper row: A table summarising the optimised settings of 

3D BLE for all sub-classes of insulin granules. Bottom 

rows: Examples of segmented insulin granule using 

optimised 3D BLE (green) and manual tracing (red); IG_C1 

(A), IG_C2 (B) and IG_C3 (C). 

 

B A 

C 



 CHAPTER 5- APPLICATION OF EDGE-DETECTION FILTER    

 

148 

 

5.2.3.2 Mitochondria 

Similar to insulin granules, only σ2 and t/h values were adjusted, and σ1 was not changed (Figure 

5.11). There is also no specific mode to determine the combination between these two parameters 

(i.e. σ2 and t/h). As score 4 and 5 are acceptable according to the scoring system proposed in 

Chapter 3 and to save time, the optimisation process was stop when it reach score 4 for a number 

of mitochondria sub-volumes (Figure 5.11 upper row).  The example in Figure 5.11 (bottom rows) 

has recorded a score of 5. There is a significant difference between the meshed models of 

automated 3D BLE and optimised 3D BLE. The blue arrows (Figure 5.11 A) are pointing at the 

areas that suffered from either broken contours or wider extended areas which produced 

unacceptable final result (i.e. score 2). After numbers of trials, optimised settings of 3D BLE 

successfully specified for this example mitochondria where it significantly increased the accuracy 

of tracing contours (Figure 5.11 B).  Visual comparison between manual tracing (red contour) and 

computational method; 3D BLE (green contour) show that most part of the mitochondria membrane 

has been nicely traced using optimised 3D BLE settings.  The part that is slightly distanced from red 

contour or the original membrane boundary (yellow arrow) is however not obvious and acceptable 

to be accurate tracing result (Figure 5.11 C, Figure 5.11 D). 
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MC Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h 

MC_C1 MC_C2 MC_C3 

MC1 5 2 3.45 0.92 MC4 4 2 3.74 0.95 MC12 4 2 3.76 0.99 

MC2 5 2 3.66 0.95 MC5 4 2 3.77 0.95 MC13 4 2 3.91 0.99 

MC3 5 2 2.98 0.95 MC7 5 2 3.72 0.95 MC14 5 2 2.70 0.92 

MC6 5 2 2.98  0.95 MC8 5 2 3.60 0.95 MC17 5 2 3.74 0.97 

MC9 4 2 3.55 0.95 MC11 4 2 3.40 0.97 MC18 5 2 3.74 0.95 

MC10 4 2 3.74 0.97 MC15 5 2 3.14 0.96      

     MC16 5 2 3.74 0.89      

 

                 

 

             

 

Figure 5.11 Comparison between meshed model of 3D BLE (green) and manual tracing (red).  

(A) Meshed model of an example of unacceptable 3D BLE segmentation result (score 3) – using automated 3D BLE (pre-filtered by 

the Gaussian and iterative median (Ali et al., 2012)). Blue arrows show the example of areas (green) that caused the result 

unsatisfactory (i.e. score 3) when compared to manual segmentation (red). (B) Result of optimised 3D BLE, this meshed model of 3D 

BLE (green) is corresponding to the ground truth set (red). This example of mitochondrion segmentation has a score of 5. (C) A side 

view of image from (B). Yellow arrow show a small ‘extended’ area produced by 3D BLE. (D) Comparison with manual tracing (red 

contour) shows optimised 3D BLE is comparable to the ground truth dataset in correspondence to the image in (C). Scale bar: 100 

nm.      

D 

B A 

C 
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5.2.3.3 The Golgi apparatus 

According to the scoring system, score of 3 is considered as acceptable for the Golgi apparatus 

(GA). Similarly, only sigma 2 (σ2) and threshold (t/h) values were adjusted, while sigma 1 (σ1) was 

maintained (Figure 5.12 a and b). As the most complex organelle, there is more than one contour 

(i.e. cisternum membrane) of each image slice of the GA needed to be traced. Finding the correct 

combination of these two parameters for optimised segmentation were time consuming. To save 

time, the parameter adjustment was stopped when it reached the score 3, particularly for image class 

3 (i.e. GA_C3) (Figure 5.12 a upper row).  

 

GA Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h  Opt. σ1 σ2 t/h 

GA_C1 GA_C2 GA_C3 

GA4 5 2 3.98 0.91 GA5 5 2 3.74 0.88 GA1 4 2 2.98 0.92 

GA10 5 2 3.80 0.93 GA6 5 2 3.77 0.88 GA2 3 2 3.50 0.93 

GA11 5 2 3.91 0.93 GA9 4 2 3.78 0.97 GA3 3 2 3.52 0.93 

          GA7 4 2 2.98 0.79 

          GA8 4 2 3.77 0.99 

          GA12 3 2 3.90 0.89 

 

        

 

Figure 5.12 (a) Optimised settings of 3D BLE for the Golgi apparatus and visual comparison of image section and the GA 3D 

models between two methods; Method 8 (left) and 3D BLE (right). 

Upper row: Table of optimised settings of 3D BLE for the Golgi apparatus. Bottom rows: 2D image of segmentation result of our 

proposed workflow, M8 (i.e. cellular tomography segmentation or CTS) (A) and 3D BLE (B).  
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Figure 5.13 (b) Optimised settings of 3D BLE for the Golgi apparatus and visual comparison of image section and the GA 3D 

models between two methods; Method 8 (left) and 3D BLE (right). 

(C) and (D) 3D models of CTS and 3D BLE respectively, before removing unwanted contours. (E) CTS 3D model after automated 

deletion of unwanted contours. (F) 3D BLE 3D model after manual deletion of unwanted contours. Processing time for both 

experiments; CTS: 3 min, 3D BLE: 19 min. 3D BLE has less accuracy of 3D visualisation where there are ‘extra region’ traced on 

one of the Golgi cisternae (red arrow) and ‘broken 3D contours’ (light blue arrow).   
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Overall, different, optimal values of σ2 were identified for the majority of the dataset - in particular 

mitochondria and the Golgi apparatus which were poorly segmented using the automated approach. 

As mentioned in the 3D BLE implementation paper, the sigma value represents a photometric 

parameter. It defines the minimum difference in intensity to be regarded as an edge. By optimising 

this value, the connectivity between contours was substantially improved and the number of broken 

contours was significantly reduced. Optimisation of this parameter has thus enabled the edge 

detector to segment complex organelle membranes more precisely. A range of σ2 and threshold 

values (3D BLE main parameters) were observed for different organelle type, morphologies and 

complexities and the requirement for Bspline interpolation varied (Tables 5.3). When the sub-

volumes were grouped according to organelle complexity (the approach proposed in Chapter 4) no 

obvious pattern was observed in the optimised settings meaning that a trial and error approach 

would remain as the only feasible method to identify optimal settings for 3D BLE at this stage. 

 

An important additional consideration is the issue of processing time. Due to the required manual 

‘clean up' of the unwanted contours, application of Bspline interpolation and the need to execute 

multiple iterations of 3D BLE to identify optimal parameters, the 3D BLE performed poorly when 

compared to the method workflow proposed in Chapter 3 (i.e. CTS) and in many cases was slower 

than manual segmentation (Table 5.4). In particular, the application of the 3D BLE to the Golgi 

apparatus sub-volumes, the most complex morphology amongst the key organelles studied here, not 

only yielded inferior MSA scores with the optimised settings (i.e. between 4 and 3) but also 

required a longer processing time than manual segmentation (Figure 5.11). Thus the 3D BLE is 

particularly unsuited to the Golgi apparatus as compared to our proposed method workflow.  
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Table 5.2 Processing time of three different segmentation methods; manual, CTS and 3D BLE.  

Those segmentation methods are manual segmentation (man), cellular tomography segmentation (CTS) – an automated method 

established in Chapters 3 and 4 - and semi-automated 3D BLE. The sub-volumes were sub-classified into image classes of particular 

organelle type. Values listed in the table are time in min.   

GA Man CTS 3DBLE MC Man CTS 3DBLE IG Man CTS 3DBLE 

GA_C1 MC_C1 IG_C1 

GA4 10 2 18 MC1 6 3 8 IG1 4 3 5 

GA10 12 3 17 MC2 5 2 15 IG2 5 3 5 

GA11 12 2 9 MC3 6 2 16 IG3 4 3 5 

GA_C2 MC6 7 3 15 IG4 4 3 5 

GA5 13 3 8 MC9 6 3 15 IG_C2 

GA6 10 3 8 MC10 6 3 14 IG5 5 3 5 

GA9 12 2 16 MC_C2 IG6 6 3 5 

GA_C3 MC4 5 3 17 IG7 4 3 5 

GA1 25 3 12 MC5 6 5 16 IG8 4 3 5 

GA2 13 3 9 MC7 8 4 18 IG11 4 3 5 

GA3 17 3 17 MC8 6 4 19 IG12 5 3 5 

GA7 22 3 20 MC11 7 3 20 IG13 4 3 5 

GA8 20 2 20 MC15 6 4 16 IG19 5 3 5 

GA12 36 4 19 MC16 9 4 10 IG20 5 3 5 

    MC_C3 IG_C3 

    MC12 7 4 21 IG9 6 3 5 

    MC13 10 4 20 IG10 7 3 8 

    MC14 8 3 19 IG14 6 3 5 

    MC17 9 4 20 IG15 8 3 6 

    MC18 9 4 24 IG16 7 3 7 

        IG17 6 3 7 

        IG18 6 3 5 

 

 

5.3 Discussion 

 

The recently developed 3D BLE has previously proven useful for detecting edges in 3D volumes 

(Ali et al., 2012). Here, 3D BLE was applied to a tomographic sub-volume of an insulin secreting 

beta cell. Earlier in this chapter, using the fully automatic settings, the whole sub-tomogram was 

analysed using the method principally as outlined in the original publication describing it (Ali et al., 

2012) and the results were apparently poor or not satisfactory (i.e. the accuracy of each contour, the 

accuracy of 3D mesh and the effectiveness of the segmentation process).  

 

Even following deconstruction of the tomogram dataset into extracted organelle sub-volumes, it 

was still necessary to manually identify the contour(s) of organelles or objects of interest from 

thousands of contours in order to provide a visually informative result. In the test performed here, 

the most optimal results required manual adjustment of two tuneable parameters within the 3D BLE 

interface. For simpler image such as immature granules less adjustment was required than for more 

complex organelles and the Golgi apparatus proved particularly challenging for this method. This 

demonstrates that to achieve optimal performance, the 3D BLE is not truly automated. The required 



 CHAPTER 5- APPLICATION OF EDGE-DETECTION FILTER    

 

154 

 

parameter adjustment was time consuming and required optimisation on a case by case basis with 

no obvious pattern that related to the sub-volume characteristics identified as a basis for sub-

classification in Chapter 4. Further analysis of the observed optimal parameter combinations for 

3D BLE may be conducted in the future, particularly to explore whether other characteristics of the 

sub-volumes of interest dictate the optimal 3D BLE settings. At this stage however, the 3D BLE 

approach remains inferior to the CTS workflow developed in Chapters 3 and 4 and the results 

presented here offer support for this as our proposed image processing approach for these types of 

studies. 
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6.1 Overview 

 

The work presented in this thesis can be broadly separated into two components: the development 

of novel computational semi-automated and rapid segmentation techniques and the introduction of 

sub-classified organelles of interest according to image properties. These are required to achieve 

rapid and accurate segmentation of cellular compartments, and enable the downstream biological 

analysis of cellular organelles. In this chapter, both the biological and technical aspects of this 

project are tied together and discussed in a wider context which includes a summary of biological 

insights and suggestions for the future directions of whole cell tomography.  

 

The complexity and uniqueness of different organelle structures and morphologies, which range in 

size, and density, have made the development of widely effective and/or high throughput processes 

complicated. The background noise however decreases the signal to noise ratio which also affects 

the membrane segmentation. This is demonstrated by the poor tracing results obtained in numerous 

case studies that implement a variety of 2D and 3D computational tracing approaches with 

recommended settings (Volkmann, 2002, Nguyen et al., 2003, van der Heide et al., 2007), including 

one of the most recent developments in this field, the 3D bilateral edge detector (3D BLE) (Ali et 

al., 2012). Labour intensive parameter optimisation significantly improves the segmentation 

accuracy, but at significant cost, both in terms of human and computational processing time (Jiang 

et al., 2003) – depending on the properties of the image data (van der Heide et al., 2007). In 3D 

cellular segmentation, necessary post-processing approaches increase the processing time required 

to achieve accurate extraction of the targeted membranes of organelles (van der Heide et al., 2007). 

Consequently more efficient methods are needed to achieve acceptable processing times while 

retaining a desirable level of accuracy in the final 3D reconstructions/visualisation.  

 

A number of significant contributions and findings are detailed in this PhD work. At the outset, this 

project was aimed at developing a semi-automated workflow and then defining the optimal settings 

from it for cellular tomography segmentation. A final revised protocol, formulated in Figure 2.4, for 

reaching the optimum segmentation workflow as identified by this work presented a number of 

improvements. Firstly, the organelle of interest is extracted and each of them will have nine copies. 

Secondly, these organelles sub-volumes are classified according to its image sub-class. Thirdly, the 

optimisation of the nine workflows is done on each copy of these sub-volumes. Fourthly, using a 
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special scoring system proposed in this thesis, the best parameter settings for particular image sub-

classes are identified.   

 

Degenerate optimal settings identification was conducted based on the sub-classification of 

organelles according to specific image features of each of these three organelles (i.e. the organelle’s 

morphologies and sizes). The image features of these organelles summarised that there are 

similarities in which could be used to facilitate in finding the right semi-automated method settings. 

This expedited the segmentation process by defining standard settings that could be applied to sub-

classified groups of organelles. The study was carried out on three key organelles pertaining to the 

insulin secretion process; i.e. the Golgi apparatus, mitochondria and insulin granules, chosen for 

these studies due to their biological importance to diabetes as well as differences in their 

morphology. This chapter summarises the key contributions and findings from each experimental 

chapter as well as future directions.   

 

6.2 Segmentation challenges 

 

6.2.1 Relationship between sub-cellular structures and the event of insulin secretion 

From a morphological point of view, the event of biochemical stimulus – particularly at insulin 

secretion process – is deterministic of sub-cellular structures. These organelles present a range of 

complexity levels in terms of computational segmentation. In this study, a number of object 

attributes were identified that has enabled classification of morphologically distinct organelles into 

sub-groups that can be treated with degenerate sets of image processing algorithms. Beneficially 

these morphologically distinct structures are linked to functional differences. For example class one 

insulin granules (i.e. IG_C1) are defined structurally as simple with an empty luminal space. 

Functionally, this sub-class represents ‘immature insulin granules’. Insulin granules in image class 

two have a small crystal (sometimes indistinct) and the crystal is ‘free’ within the luminal space. In 

contrast the crystals of insulin granules belonging to image class three are ‘complete’ in shape, 

bigger, and the crystal’s edges usually touch the granule’s membrane (i.e. luminal space boundary). 

When the insulin grows into a crystalline structure it is called ‘mature insulin granules’. The growth 

process of this ‘crystal’ is concluded into two stages and described as image classes two and three 

(i.e. IG_C2 and IG_C3). Both image classes are functionally named as ‘mature insulin granule’ but 

are structurally different. Similarly, the Golgi apparatus was divided into three image classes; 
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named GA_C1, GA_C2 and GA_C3. The differences used here to sub-classify the Golgi apparatus 

(GA) possibly represent different stages of GA function in vesicular transport. For example, the GA 

tends to be larger (different in size) and more numerous in cells depending on the types of proteins 

it synthesised (Marsh et al., 2004, Emr et al., 2009, Ladinsky et al., 2002).  

 

6.2.2 The role of image classification in insulin release  

Computationally, the prime objective of classifying these key organelles was to enable efficient 

computational segmentation for high throughput analysis. Biologically however, this image 

classification may allow biologists to characterise and analyse the current cell’s state for future 

studies. These tomograms (with many of its mitochondria classified in MC_C2 and MC_C3) can be 

classified as undergoing fusion and/or fission process which relates to the cell’s energy production 

(Chen and Chan, 2009, Wiederkehr and Wollheim, 2006, Jitrapakdee et al., 2010, Chan, 2006, 

Karbowski et al., 2004, Collins et al., 2002). Rapid quantitative observations such as these may 

enable a better understanding of the current state of a cell and the relationship to other cells (or sub-

cells).   

 

6.3 More accurate modelling of cells 

 

6.3.1 Faster and more accurate segmentation using a semi-automated method workflow 

In Chapter 3 a semi-automated workflow for fast and accurate cellular tomography segmentation 

was introduced. A series of tests were conducted for the development of the workflow. The first test 

was to evaluate the surface-rendered models of filtered images compared to manual segmentation. 

Nine image filters (optimised settings) from different backgrounds were applied for the purpose of 

comparison. They were: Gaussian filter, Minimum filter, Maximum filter, 2D Median filter, 3D 

Median filter, Meanshift filter, Kuwahara filter, Non-linear Anisotopic Diffusion filter and Bilateral 

filter. Surface-rendered models of filtered images were initially compared to contours derived from 

manually segmented tomograms (Chapter 3, Section 3.3.2.1, Figure 3.2, Figure 3.3, Figure 3.4 

and Table 3.4). Subsequently, two segmentation algorithms were evaluated – the snake algorithm 

(semi-automated approach) and watershed algorithm (automated approach). Stacks of 2D images of 

example datasets were pre-processed (filtered) using nine noise reduction filters (at recommended 

settings). Example 2D image stacks pre-filtered using one of the nine noise reduction filters were 
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segmented by either the snakes or watershed algorithms. Contours obtained following application 

of both snakes (with parameter adjustment) and watershed (with parameter adjustment) were 

comparable to manual tracing, however, snakes required longer processing time (particularly 

influenced by the need to manually draw initial contours and parameter adjustment) compared to 

watershed algorithm and manual tracing. Thus, watershed was selected as a basis for workflow 

development. 

 

The shortcoming of just using noise reduction together with watershed algorithm is the unwanted 

contours. These contours needed to be removed. In order to address this computationally, 

mathematical morphology modelling algorithm was added as a post-processing step, which 

improved the results obtained from the workflow.  

Nine method flows (M1 – M9) were thus developed; each of 9 different filters, followed in turn by 

watershed and mathematical morphologies. The 9 different filters were M1: Gaussian filter; M2: 

Minimum filter; M3: Maximum filter; M4: 2D Median filter; M5: 3D Median filter; M6: Kuwahara 

filter; M7: Meanshift filter; M8: Non-linear anisotropic diffusion (NAD) filter; and M9: Bilateral 

filter.    

 

Having defined these method flows, optimised settings were identified for every organelle sub-

volume. The segmentation results were able to be improved further by tuning the default settings 

used by each of the noise reduction filters, the watershed and mathematical morphology algorithms. 

To quantify the results obtained from these methods flows, as compared to the manually segmented 

ground truth datasets, a novel scoring system was introduced that enabled identification of settings 

that achieved optimal tracing results. This scoring system is based on comparison of the mesh 

surface area (MSA) value obtained using manual and computational methods segmentation. These 

MSA values were calculated from the 3-D models of the organelles. Based on these comprehensive 

trials, the best method flow was consistently identified as non-linear anisotropic diffusion (NAD) 

filtering followed by watershed and mathematical morphologies (i.e. the flow annotated as Method 

8 throughout this thesis) and is described in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 5.11. 3D 

median filtering followed by watershed (designated Method 5) and bilateral filtering followed by 

watershed (designated Method 9) also performed reasonably well, depending on the morphology of 

the target structure 
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6.3.2 The importance of identifying and sub-classifying cellular compartments according 

to image properties  

The identification of a single standard approach to segment all cellular tomography images has still 

not been achieved (van der Heide et al., 2007, Volkmann, 2002). The unique nature of each 

organelle requires appropriate pre-filtering algorithms and parameter optimisation for accurate 

segmentation. For example, even though workflow M8 proved consistently optimal in the studies 

summarised above, within this workflow different parameter settings were required in order to 

optimise the segmentation results for different organelles. However, this study has demonstrated 

that classification of these organelle sub-volumes according to their image properties provides a 

feasible basis for the identification of standard optimised settings for each image sub-class, opening 

up the possibility for faster semi-automated segmentation and making the identification of optimal 

settings for image processing easier.  

 

In Chapter 4, the study of image properties from more than 400 sub-volumes of key organelles was 

conducted. Three image sub-classes were defined for each key organelle (i.e. in total there were 

nine image classes). When organelle sub-volumes were grouped into the same class (i.e. that have 

similarities in properties such as morphology, structure size, organelle type) the process of 

automated contour tracing could be significantly expedited. Optimised settings for segmentation 

obtained using 10 example sub-volumes from each image class could be applied without 

modification to the rest of the organelle sub-volumes within the same image class. Thus, standard 

optimised settings for Method M8 (the best method flow) could be identified for the nine different 

sub-classes (Section 4.2.3 and Section 4.2.4, Table 4.2) enabling rapid, subsequent contour 

determination for the entire 400 sub-volume dataset. This substantial finding represents the first 

discovery of a degenerate set of standard settings that enable the semi-automated segmentation at a 

satisfactory accuracy level for organelles corresponding to a defined cellular image sub-class.  

 

6.3.3 Improving model accuracy of 3D BLE by optimising the settings of sigma 2 and 

threshold values  

In parallel with the work described here, ongoing studies conducted within the Hankamer Group 

from the Institute for Molecular Bioscience, UQ, were focussed on the development of a true 

parameter-free 3D edge detector algorithm. In 2012 (Ali et al., 2012), this was reportedly achieved 

through the implementation in 3D of the previously described 2D bilateral edge detection filter 

(Pantelic et al., 2006, Pantelic et al., 2007). The automated 3D BLE (i.e. with no parameter 
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optimisation) demonstrated accurate segmentation of macromolecular complexes and provides a 

valuable tool for accurate 3D structural complexity annotation at the sub-cellular level. The 

efficiency of 3D BLE was further tested in Chapter 5. A sub-region, extracted from a cellular 

tomogram used to generate the data analysed in Chapter 3 and Chapter 4, was used in initial tests 

of the 3D BLE. As the implementation was particularly focused on detecting objects edges (sigma 

2) – while reducing image noise (threshold value) – even following the application of Bspline 

interpolation, unfortunately default parameters of 3D BLE produced a segmented map with 

numerous broken contours.  

 

Improved segmentation results could be obtained using the 3D BLE when the organelles of interest 

were extracted into sub-volumes and processed individually with two of the three modifiable 

parameters in the 3D BLE GUI – the sigma 2 and threshold values – were iteratively optimised. 

These optimal 3D BLE segmentation results were quantitatively compared to the results obtained 

from the workflow based on Method M8, outlined in Chapter 4. The results obtained using the 

workflow approach were consistently better in terms of processing time and segmentation accuracy, 

compared to the results of optimised 3D BLE, despite the fact that parameters were optimised for 

each individual sub-volume. Post-processing of the 3D BLE with the mathematical morphology 

operations employed in the M8 workflow improved the contour connectivity for more accurate 3D 

surface meshes – i.e. close to the ground truth dataset. But this post-processing further increased the 

time required to apply the 3D BLE.  

Ultimately, both the automated 3D BLE and workflow M8 proved faster than manual tracing. 

However, as compared to 3D BLE, optimal settings of M8 (Chapter 4) score significantly better in 

terms of MSA than the final, optimised 3DBLE results (Section 5.2.3, example in Figure 5.12) 

while maintaining a significant time advantage, performing approximately 50% faster than 3D BLE 

(Table 5.4).  

 

6.4 Future directions 

 

6.4.1 Towards automated annotation of cellular compartments using machine learning 

approaches  

The major outcome of this thesis has been the development of a semi-automated approach for 

cellular tomography segmentation (semi-automated CTS) that enables relatively accurate 
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segmentation of complex cellular compartments at a faster rate than what has previously been 

possible. It produces complete stacks of contours throughout the entire object volume.  

With the recent advance of single particle tomography (i.e. a subset of sub-tomogram averaging 

techniques), 3D sub-volumes of macromolecular assemblies are extracted from larger tomographic 

volumes and oriented/averaged together to generate 3D structures. Similar principles applied to 

those described in the Woolford paper (Woolford et al., 2007) – an algorithm which combined 

information about particle diameter with other parameters such as the ones described in this thesis 

to discriminate between true particles and false particles – may be applicable to automated particle 

picking in 3D. This could be used as a basis for a particle picking algorithm. The relevance to this 

work is that properties like particle diameter, perimeter and contour area, which in 3D equate to 

MSA and volume might be able to be incorporated into an automatic organelle classification system 

using e.g. machine learning approaches.  For example, are there a set of readily identifiable features 

in the raw data that user could draw on to classify insulin granules as IG_C1, C2 or C3 respectively, 

rather than the user having to manually assign these to an image group. 

The concept of contour space and number of examples of contour spaces are illustrated in Figure 

6.1 and Figure 6.2 respectively – adapted from (Woolford et al., 2007) – which could be combined 

with other image features (e.g. inverted contrast of insulin granules, number of membrane 

boundaries might dictate a Golgi). The paper also describes methods for counting the number of 

pixels inside a contour (i.e. area of a contour), and the number of pixels that make up the contour 

(i.e. perimeter) (in 3D this would be the volume and the total mesh surface area, which we already 

have).  
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Figure 6.1 Concept of contour space (A) and three examples of different contours (B).  

(A) Example of a contour valid for LMAJOR(c) > LMINOR(c), i.e. above the line y = x. The vertical axis represents the length of the 

contour’s major axis and the horizontal axis represents the length of its minor axis. The contour (denoted c) is described as the point 

[LMINOR(c), LMAJOR(c)] in contour space which describes the length of its major and minor axes. (B) The figure demonstrates the 

topology of these three contours is arbitrary even they are characterised by the same point in contour space depicted in (A).  A point 

in contour space summarizes the lengths of a contour’s major and minor axes.  

 

 
Figure 6.2 Three contour selection spaces to generate MAXMAJOR and MINMINOR from the (black) contour shown in all three 

panels.  

(A) The region of contour space (shaded grey) satisfies LMAJOR(c) ≤ MAXMAJOR, MINMINOR ≤ LMINOR(c) and LMAJOR(c) > LMINOR(c). (B) 

Grey region satisfy MINMAJOR ≤ LMAJOR(c) and LMINOR(c) ≤ MAXMINOR - useful for selecting long, thin contours. (C) The approach 

selects contours from the intersection of the grey regions depicted in (A and B). Note that for this approach (i.e. bounded interval 

approach) to proceed; more than one contour must be selected interactively by the user. Upon execution of the automatic selection 

algorithm, all contours that coincide with the grey area in contour space will be selected automatically. 

 

 

The knowledge of the differences in the image structures within image classes (as described in this 

study) could be extended to a wider scope by cellular biologists and even microbiologists.  Prime 

examples are; a study of the relationship between structure and function within organelles sub-
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classes such as the chemical factors which contribute to their structural differences, and a study on 

how the image classes of these organelles pertained to its quantity in a sample data. These studies 

have higher potential to be achieved when using cells with different conditions (e.g. stimulated and 

non-stimulated cells). Besides that, these studies could improve the efficiency of mathematical 

segmentation to the next level such as one standard settings of the best method (i.e. Method 8) 

could be applied to segment organelles from different image classes.   

 

6.5 Conclusion 

 

As a starting point for this PhD it was shown (Marsh et al., 2001a) that the manual 3D segmentation 

of ~1% of an insulin-secreting HIT-T15 cell required ~ 3600 person-hours. This PhD project has 

demonstrated an effective semi-automated segmentation workflow based on optimised settings of 

image filtration, watershed algorithm and mathematical morphologies operations (for selected 

segmentation cases). The most efficient workflow involves pre-filtering with the non-linear 

anisotropic diffusion algorithm. Degenerate sets of algorithm parameters have been identified that 

enable the rapid and accurate segmentation of organelles belonging to one of nine image sub-classes 

for three key organelles. The key organelles chosen for this study, namely insulin granules, the 

Golgi apparatus and mitochondria, are morphologically diverse and have thus provided a robust 

platform for the development of this technology. 

 

Sorting organelles of interest into morphologically distinct sub-classes has not only improved the 

processing time of the individual organelle sub-volume (i.e. approximately 90% to 200% faster than 

manual segmentation approach) but has also been critical to achieving the project aim – to 

identifying a range of optimal algorithms and settings that are suitable for the rapid segmentation of 

isolated organelle structures at sufficient accuracy to enable high throughput, quantitative 

comparison of cellular tomography data. The workflow developed here was able to segment >80% 

of organelles within an accuracy of +/- 5% of the true contour, as defined by manual segmentation; 

where successful detailed 3D segmentation of human cell was represented in the Marsh Group 

(Marsh et al., 2001a). Currently there exists no single parameter or parameter-free automated 

segmentation methods that can reliably tracing complex organelles within high resolution 

tomograms at a speed and accuracy comparable to this method. This method has shown 

improvement in semi-automated segmentation and thus represents an important development for 

future automated analysis of cellular tomograms.  
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