342 research outputs found

    Time-Resolved Detection of Individual Electrons in a Quantum Dot

    Full text link
    We present measurements on a quantum dot and a nearby, capacitively coupled, quantum point contact used as a charge detector. With the dot being weakly coupled to only a single reservoir, the transfer of individual electrons onto and off the dot can be observed in real time in the current signal from the quantum point contact. From these time-dependent traces, the quantum mechanical coupling between dot and reservoir can be extracted quantitatively. A similar analysis allows the determination of the occupation probability of the dot states.Comment: 3 pages, 3 figure

    Finite bias charge detection in a quantum dot

    Full text link
    We present finite bias measurements on a quantum dot coupled capacitively to a quantum point contact used as a charge detector. The transconductance signal measured in the quantum point contact at finite dot bias shows structure which allows us to determine the time-averaged charge on the dot in the non-blockaded regime and to estimate the coupling of the dot to the leads.Comment: 6 pages, 4 figure

    Cotunneling-mediated transport through excited states in the Coulomb blockade regime

    Full text link
    We present finite bias transport measurements on a few-electron quantum dot. In the Coulomb blockade regime, strong signatures of inelastic cotunneling occur which can directly be assigned to excited states observed in the non-blockaded regime. In addition, we observe structures related to sequential tunneling through the dot, occuring after it has been excited by an inelastic cotunneling process. We explain our findings using transport calculations within the real-time Green's function approach, including diagrams up to fourth order in the tunneling matrix elements.Comment: 4 pages, 3 figure

    100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales

    Get PDF
    Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions

    MacDowell-Mansouri gravity and Cartan geometry

    Full text link
    The geometric content of the MacDowell-Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geometric meaning to the MacDowell-Mansouri trick of combining the Levi-Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous "model spacetime", including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A "Cartan connection" gives a prescription for parallel transport from one "tangent model spacetime" to another, along any path, giving a natural interpretation of the MacDowell-Mansouri connection as "rolling" the model spacetime along physical spacetime. I explain Cartan geometry, and "Cartan gauge theory", in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell-Mansouri gravity, as well as its more recent reformulation in terms of BF theory, in the context of Cartan geometry.Comment: 34 pages, 5 figures. v2: many clarifications, typos correcte

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature

    Effects of temperature on thick branes and the fermion (quasi-)localization

    Full text link
    Following Campos's work [Phys. Rev. Lett. 88, 141602 (2002)], we investigate the effects of temperature on flat, de Sitter (dS), and anti-de Following Campos's work [Phys. Rev. Lett. \textbf{88}, 141602 (2002)], we investigate the effects of temperature on flat, de Sitter (dS), and anti-de Sitter (AdS) thick branes in five-dimensional (5D) warped spacetime, and on the fermion (quasi-)localization. First, in the case of flat brane, when the critical temperature reaches, the solution of the background scalar field and the warp factor is not unique. So the thickness of the flat thick brane is uncertain at the critical value of the temperature parameter, which is found to be lower than the one in flat 5D spacetime. The mass spectra of the fermion Kaluza-Klein (KK) modes are continuous, and there is a series of fermion resonances. The number and lifetime of the resonances are finite and increase with the temperature parameter, but the mass of the resonances decreases with the temperature parameter. Second, in the case of dS brane, we do not find such a critical value of the temperature parameter. The mass spectra of the fermion KK modes are also continuous, and there is a series of fermion resonances. The effects of temperature on resonance number, lifetime, and mass are the same with the case of flat brane. Last, in the case of AdS brane, {the critical value of the temperature parameter can less or greater than the one in the flat 5D spacetime.} The spectra of fermion KK modes are discrete, and the mass of fermion KK modes does not decrease monotonically with increasing temperature parameter.Comment: 24 pages, 15 figures, published versio
    • …
    corecore