35 research outputs found

    Lignin degradation efficiency of chemical pre-treatments on banana rachis destined to bioethanol production

    Get PDF
    Valuable biomass conversion processes are highly dependent on the use of effective pretreatments for lignocellulose degradation and enzymes for saccharification. Among the nowadays available treatments, chemical delignification represents a promising alternative to physical-mechanical treatments. Banana is one of the most important fruit crops around the world. After harvesting, it generates large amounts of rachis, a lignocellulosic residue, that could be used for second generation ethanol production, via saccharification and fermentation. In the present study, eight chemical pretreatments for lignin degradation (organosolv based on organic solvents, sodium hypochlorite, hypochlorous acid, hydrogen peroxide, alkaline hydrogen peroxide, and some combinations thereof) have been tested on banana rachis and the effects evaluated in terms of lignin removal, material losses, and chemical composition of pretreated material. Pretreatment based on lignin oxidation have demonstrated to reach the highest delignification yield, also in terms of monosaccharides recovery. In fact, all the delignified samples were then saccharified with enzymes (cellulase and beta-glucosidase) and hydrolysis efficiency was evaluated in terms of final sugars recovery before fermentation. Analysis of Fourier transform infrared spectra (FTIR) has been carried out on treated samples, in order to better understand the structural effects of delignification on lignocellulose. Active chlorine oxidations, hypochlorous acid in particular, were the best effective for lignin removal obtaining in the meanwhile the most promising cellulose-to-glucose conversion

    Lignin biodegradation in pulp-and-paper mill wastewater by selected white rot fungi

    Get PDF
    An investigation has been carried out to explore the lignin-degrading ability of white rot fungi, as B. adusta and P. crysosporium, grown in different media containing (i) glucose and mineral salts; (ii) a dairy residue; (iii) a dairy residue and mineral salts. Both fungi were then used as inoculum to treat synthetic and industrial pulp-and-paper mill wastewater. On synthetic wastewater, up to 97% and 74% of lignin degradation by B. adusta and P. crysosporium, respectively, have been reached. On industrial wastewater, both fungal strains were able to accomplish 100% delignification in 8-10 days, independent from pH control, with a significant reduction of total organic carbon (TOC) of the solution. Results have confirmed the great biotechnological potential of both B. adusta and P. crysosporium for complete lignin removal in industrial wastewater, and can open the way to next industrial applications on large scale

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Eculizumab improves fatigue in refractory generalized myasthenia gravis

    Get PDF

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity

    Get PDF
    Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.Animal science

    Biocatalytic activity of fresh Passiflora spp. leaves in enantioselective oxido-reduction.

    No full text
    The biocatalytic activity of five species of Passiflora leaves (i.e. P. amethyst, P. incarnata, P. quadrangularis, P. edulis, P. cerulea) was tested in the reduction of the ketone “cocktail” (i.e. 5-hexen-2-one 1, acetophenone 2, cisbicyclo[ 3.2.0]hept-2-en-6-one 3 and 2-methylcyclohexanone 4) and in the oxidation of the corresponding alcohols “cocktail” (i.e. 5-hexen-2-ol 5, 1-phenylethanol 6, endo-bicyclo[3.2.0]hept-2-en-6-ol 7, exo-bicyclo[3.2.0] hept-2-en- 6-ol 8, trans-2-methylcyclohexanol 9 and cis-2-methylcyclohexanol 10). P. amethyst and P. incarnata show the best activity in the reduction, while P. quadrangularis affords low yield in reduction but gives appreciable results in oxidation towards a cocktail of model substrates. This simple screening permits to test the potential of parts of fresh plants that can be used as biocatalysts in more ecologically and economically promising transformation
    corecore