16 research outputs found

    The essential role of multi-point measurements in investigations of turbulence, three-dimensional structure, and dynamics: the solar wind beyond single scale and the Taylor Hypothesis

    Full text link
    Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, their structure in space and their behavior in time are not related in any simple way. Therefore, single spacecraft in situ measurements cannot unambiguously unravel the full space-time structure of the heliospheric plasmas of interest in the inner heliosphere, in the Geospace environment, or the outer heliosphere. This shortcoming leaves numerous central questions incompletely answered. Deficiencies remain in at least two important subjects, Space Weather and fundamental plasma turbulence theory, due to a lack of a more complete understanding of the space-time structure of dynamic plasmas. Only with multispacecraft measurements over suitable spans of spatial separation and temporal duration can these ambiguities be resolved. We note that these characterizations apply to turbulence across a wide range of scales, and also equally well to shocks, flux ropes, magnetic clouds, current sheets, stream interactions, etc. In the following, we will describe the basic requirements for resolving space-time structure in general, using turbulence' as both an example and a principal target or study. Several types of missions are suggested to resolve space-time structure throughout the Heliosphere.Comment: White Paper submitted to: Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033. arXiv admin note: substantial text overlap with arXiv:1903.0689

    A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

    Get PDF
    Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. // Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type specific depletion was used in a murine model of acquired epilepsy. // Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers, and in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. // Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

    Get PDF
    Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    Effective control of sars-cov-2 transmission between healthcare workers during a period of diminished community prevalence of covid-19

    Get PDF
    Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to nearzero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely

    Mapping a Post-Queer Terrain: Radicalizing Poststructural Bodies

    No full text
    What would it mean to engage a post-queer time and space? How can the body become post-queer? Mapping a Post-Queer Terrain radically reconceptualizes bodies of poststructuralist discourse through a critical exploration of bodily materiality, subjectivity, and culture. This project makes an original contribution to the existing queer corpus through an inquiry into the post-queer that exposes the body as a virtual becoming. Although queer theory continues to offer a critical and necessary politics, in agreement with Bobby Noble, the vulnerability of queer is upheld in its circulation as a centripetal or centrifugal term. This project makes a new flow of (knowledge) production with queer theory using Bakhtin and Deleuze and Guattari to read through Foucault and Butlers. It is structured nomadically and is virtually directed where it continuously makes and breaks theoretical and philosophical connections

    The essential role of multi-point measurements in investigations of heliospheric turbulence, three-dimensional structure, and dynamics

    No full text
    White Paper submitted to: Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033. arXiv admin note: substantial text overlap with arXiv:1903.06890Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, their structure in space and their behavior in time are not related in any simple way. Therefore, single spacecraft in situ measurements cannot unambiguously unravel the full space-time structure of the heliospheric plasmas of interest in the inner heliosphere, in the Geospace environment, or the outer heliosphere. This shortcoming leaves numerous central questions incompletely answered. Deficiencies remain in at least two important subjects, Space Weather and fundamental plasma turbulence theory, due to a lack of a more complete understanding of the space-time structure of dynamic plasmas. Only with multispacecraft measurements over suitable spans of spatial separation and temporal duration can these ambiguities be resolved. We note that these characterizations apply to turbulence across a wide range of scales, and also equally well to shocks, flux ropes, magnetic clouds, current sheets, stream interactions, etc. In the following, we will describe the basic requirements for resolving space-time structure in general, using turbulence' as both an example and a principal target or study. Several types of missions are suggested to resolve space-time structure throughout the Heliosphere
    corecore