722 research outputs found

    Chaos suppression in the large size limit for long-range systems

    Full text link
    We consider the class of long-range Hamiltonian systems first introduced by Anteneodo and Tsallis and called the alpha-XY model. This involves N classical rotators on a d-dimensional periodic lattice interacting all to all with an attractive coupling whose strength decays as r^{-alpha}, r being the distances between sites. Using a recent geometrical approach, we estimate for any d-dimensional lattice the scaling of the largest Lyapunov exponent (LLE) with N as a function of alpha in the large energy regime where rotators behave almost freely. We find that the LLE vanishes as N^{-kappa}, with kappa=1/3 for alpha/d between 0 and 1/2 and kappa=2/3(1-alpha/d) for alpha/d between 1/2 and 1. These analytical results present a nice agreement with numerical results obtained by Campa et al., including deviations at small N.Comment: 10 pages, 3 eps figure

    Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions

    Full text link
    The system of N particles moving on a circle and interacting via a global repulsive cosine interaction is well known to display spatially inhomogeneous structures of extraordinary stability starting from certain low energy initial conditions. The object of this paper is to show in a detailed manner how these structures arise and to explain their stability. By a convenient canonical transformation we rewrite the Hamiltonian in such a way that fast and slow variables are singled out and the canonical coordinates of a collective mode are naturally introduced. If, initially, enough energy is put in this mode, its decay can be extremely slow. However, both analytical arguments and numerical simulations suggest that these structures eventually decay to the spatially uniform equilibrium state, although this can happen on impressively long time scales. Finally, we heuristically introduce a one-particle time dependent Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.

    Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile

    Get PDF
    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits

    Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers

    Get PDF
    A new general synthetic access to carboxylated quaterpyridines (qpy), of interest as ligands for panchromatic dyesensitized solar cell organometallic sensitizers, is presented. The strategic step is a Suzuki−Miyaura cross-coupling reaction, which has allowed the preparation of a number of representative unsubstituted and alkyl and (hetero)aromatic substituted qpys. To bypass the poor inherent stability of 2-pyridylboronic acid derivatives, we successfully applied N-methyliminodiacetic acid (MIDA) boronates as key reagents, obtaining the qpy ligands in good yields up to (quasi)gram quantities. The structural, spectroscopic (NMR and UV−vis), electrochemical, and electronic characteristics of the qpy have been experimentally and computationally (DFT) investigated. The easy access to the bis-thiocyanato Ru(II) complex of the parent species of the qpy series, through an efficient route which bypasses the use of Sephadex column chromatography, is shown. The bis-thiocyanato Ru(II) complex has been spectroscopically (NMR and UV−vis), electrochemically, and computationally investigated, relating its properties to those of previously reported Ru(II)−qpy complexes.“This document is the Accepted Manuscript version of a Published Work that appeared in final form in [The Journal of Organic Chemistry], copyright © American Chemical Society after peer review and technical editing by the publisher

    Cost estimation for rapid manufacturing — simultaneous production of mixed components using laser sintering

    Get PDF
    Rapid manufacturing (RM) is a production method able to build components by adding material layer by layer, and it thus allows the elimination of tooling from the production chain. For this reason, RM enables a cost-efficient production of low-volume components favouring the customization strategy. Previous work has been developed on costing methodologies applicable to RM, but it was limited to the scenario of the production of copies of the same part. In reality, RM enables the production of different components simultaneously, and thus a smart mix of components in the same machine can achieve an enhanced cost reduction. This paper details this concept by proposing mathematical models for the assignment of the full production cost into each single product and by validating through a case study. This paper extends previous work on RM costing by adding the scenario of simultaneous production of different parts

    One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes

    Full text link
    We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α\alpha of the power law is taken in the range 0≤α<10 \le \alpha <1. The oscillator frequency distribution is symmetric about its mean (taken to be zero), and is non-increasing on [0,∞)[0,\infty). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times, all the non-zero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.Comment: 7 pages, 4 figures. v2: new simulation results added, close to the published versio

    Ensemble inequivalence in systems with long-range interactions

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We illustrate our results showing an application to the Blume-Emery-Griffiths model. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 12 pages, no figure

    Learning logic programs with negation as failure

    Get PDF
    Normal logic programs are usually shorter and easier to write and understand than definite logic programs. As a consequence, it is worth investigating their learnability, if Inductive Logic Program- ming is to be proposed as an alternative tool for software development and Software Engineering at large. In this paper we present an exten- sion of the ILP system TRACY, called TRACY-not, able to learn normal logic programs. The method is proved to be sound, in the sense that it outputs a program which is complete and consistent w.r.t.the ex- amples, and complete, in the sense that it does find a solution when it exists. Compared to learning systems based on extensionality,TRACY and TRACY not are less dependent on the kind and number of training examples, which is due to the intensional evaluation of the hypothe- ses and, for TRACY-not, to the possibility to have restricted hypothesis spaces through the use of negation

    Cost estimation for rapid manufacturing - laser sintering production for low to medium volumes

    Get PDF
    Rapid manufacturing (RM) is a modern production method based on layer by layer manufacturing directly from a three-dimensional computer-aided design model. The lack of tooling makes RM economically suitable for low and medium production volumes. A comparison with traditional manufacturing processes is important; in particular, cost comparison. Cost is usually the key point for decision making, with break-even points for different manufacturing technologies being the dominant information for decision makers. Cost models used for traditional production methodologies focus on material and labour costs, while modern automated manufacturing processes need cost models that are able to consider the high impact of investments and overheads. Previous work on laser sintering costing was developed in 2003. This current work presents advances and discussions on the limits of the previous work through direct comparison. A new cost model for laser sintering is then proposed. The model leads to graph profiles that are typical for layer-manufacturing processes. The evolution of cost models and the indirect cost significance in modern costing representation is shown finally

    Kinetic theory for non-equilibrium stationary states in long-range interacting systems

    Full text link
    We study long-range interacting systems perturbed by external stochastic forces. Unlike the case of short-range systems, where stochastic forces usually act locally on each particle, here we consider perturbations by external stochastic fields. The system reaches stationary states where external forces balance dissipation on average. These states do not respect detailed balance and support non-vanishing fluxes of conserved quantities. We generalize the kinetic theory of isolated long-range systems to describe the dynamics of this non-equilibrium problem. The kinetic equation that we obtain applies to plasmas, self-gravitating systems, and to a broad class of other systems. Our theoretical results hold for homogeneous states, but may also be generalized to apply to inhomogeneous states. We obtain an excellent agreement between our theoretical predictions and numerical simulations. We discuss possible applications to describe non-equilibrium phase transitions.Comment: 11 pages, 2 figures; v2: small changes, close to the published versio
    • …
    corecore