598 research outputs found

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    Multimaterial Piezoelectric Fibres

    Get PDF
    Fibre materials span a broad range of applications ranging from simple textile yarns to complex modern fibre-optic communication systems. Throughout their history, a key premise has remained essentially unchanged: fibres are static devices, incapable of controllably changing their properties over a wide range of frequencies. A number of approaches to realizing time-dependent variations in fibres have emerged, including refractive index modulation1, 2, 3, 4, nonlinear optical mechanisms in silica glass fibres5, 6, 7, 8 and electroactively modulated polymer fibres9. These approaches have been limited primarily because of the inert nature of traditional glassy fibre materials. Here we report the composition of a phase internal to a composite fibre structure that is simultaneously crystalline and non-centrosymmetric. A ferroelectric polymer layer of 30 μm thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of micrometres in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of metres of piezoelectric fibre. The fibres show a piezoelectric response and acoustic transduction from kilohertz to megahertz frequencies. A single-fibre electrically driven device containing a high-quality-factor Fabry–Perot optical resonator and a piezoelectric transducer is fabricated and measured.National Science Foundation (U.S.) (Materials Research Science and Engineering Centers Program, award number DMR-0819762)United States. Defense Advanced Research Projects Agency (Griggs)United States. Army Research Office (Institute for Soldier Nanotechnologies, contract no. W911NF-07-D-0004

    Optically transparent dense colloidal gels.

    Get PDF
    Traditionally it has been difficult to study the porous structure of dense colloidal gels and (macro) molecular transport through them simply because of the difference in refractive index between the colloid material and the continuous fluid phase surrounding it, rendering the samples opaque even at low colloidal volume fractions. Here, we demonstrate a novel colloidal gel that can be refractive index-matched in aqueous solutions owing to the low refractive index of fluorinated latex (FL)-particles (n = 1.37). Synthesizing them from heptafluorobutyl methacrylate using emulsion polymerization, we demonstrate that they can be functionalized with short DNA sequences via a dense brush-layer of polystyrene-b-poly(ethylene oxide) block-copolymers (PS-PEO). The block-copolymer, holding an azide group at the free PEO end, was grafted to the latex particle utilizing a swelling-deswelling method. Subsequently, DNA was covalently attached to the azide-end of the block copolymer via a strain-promoted alkyne-azide click reaction. For comparison, we present a structural study of single gels made of FL-particles only and composite gels made of a percolating FL-colloid gel coated with polystyrene (PS) colloids. Further we demonstrate that the diffusivity of tracer colloids dispersed deep inside a refractive index matched FL-colloidal gel can be measured as function of the local confinement using Dynamic Differential Microscopy (DDM).EE thanks the Winton Program for Sustainable Physics and the ETN-COLLDENSE (H2020-MCSA-ITN-2014, grant no. 642774), Clare P. Grey for collaborations and continued discussions as well as W. Frith. MZ is funded by a joint EPSRC and Unilever CASE award RG748000. DJ thanks the Udayan Care - Vcare grant, the Nehru Trust for Cambridge University, Schlumberger Foundation's FFTF program and Hughes Hall - Santander Bursary. ZR received funding from the Winton Program for the Physics of Sustainability and the EU ERC FP7 programme via an advanced fellowship for Clare P. Grey

    The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries

    Get PDF
    Abstract: A major challenge for lithium‐ion batteries based on nickel‐rich layered oxide cathodes is capacity fading. While chemo‐mechanical degradation and/or structural transformation are widely considered responsible for degradation, a comprehensive understanding of this process is still not complete. For the stable performance of these cathode materials, aluminium (Al) plays a crucial role, not only as a current collector but also as substitutional element for the transition metals in the cathodes and a protective oxide coating (as Al2O3). However, excess Al can be detrimental due to both its redox inactive nature in the cathode and the insulating nature of Al2O3. In this work, we report an analysis of the Al content in two different types of nickel‐rich manganese cobalt oxide cathode materials after battery cycling. Our results indicate a significant thickening of Al‐containing phases on the surface of the NMC811 electrode. Similar results are observed from commercial batteries (a mixture of NMC532 and LiMn2O4) that were analysed before use and at the end of life, where Al‐containing phases were found to increase significantly at surfaces and grain boundaries. Considering the detrimental effects of the excess Al in the nickel‐rich cathodes, our observation of increased Al content via battery cycling is believed to bring a new perspective to the ongoing discussions regarding the capacity fading phenomenon of nickel‐rich layered oxide materials as part of their complex degradation mechanisms

    Risk factors for high anti-HHV-8 antibody titers (≥1:51,200) in black, HIV-1 negative South African cancer patients: a case control study

    Get PDF
    Background: Infection with human herpesvirus 8 (HHV-8) is the necessary causal agent in the development of Kaposi's sarcoma (KS). Infection with HIV-1, male gender and older age all increase risk for KS. However, the geographic distribution of HHV-8 and KS both prior to the HIV/AIDS epidemic and with HIV/AIDS suggest the presence of an additional co-factor in the development of KS. Methods: Between January 1994 and October 1997, we interviewed 2576 black in-patients with cancer in Johannesburg and Soweto, South Africa. Blood was tested for antibodies against HIV-1 and HHV-8 and the study was restricted to 2191 HIV-1 negative patients. Antibodies against the latent nuclear antigen of HHV-8 encoded by orf73 were detected with an indirect immunofluorescence assay. We examined the relationship between high anti-HHV-8 antibody titers (≥1:51,200) and sociodemographic and behavioral factors using unconditional logistic regression models. Variables that were significant at p = 0.10 were included in multivariate analysis. Results: Of the 2191 HIV-1 negative patients who did not have Kaposi's sarcoma, 854 (39.0%) were positive for antibodies against HHV-8 according to the immunofluorescent assay. Among those seropositive for HHV-8, 530 (62.1%) had low titers (1:200), 227 (26.6%) had medium titers (1:51,200) and 97 (11.4%) had highest titers (1:204,800). Among the 2191 HIV-1 negative patients, the prevalence of high anti-HHV-8 antibody titers (≥1:51,200) was independently associated with increasing age (ptrend = 0.04), having a marital status of separated or divorced (p = 0.003), using wood, coal or charcoal as fuel for cooking 20 years ago instead of electricity (p = 0.02) and consuming traditional maize beer more than one time a week (p = 0.02; p-trend for increasing consumption = 0.05) although this may be due to chance given the large number of predictors considered in this analysis. Conclusions: Among HIV-negative subjects, patients with high anti-HHV-8 antibody titers are characterized by older age. Other associations that may be factors in the development of high anti- HHV-8 titers include exposure to poverty or a low socioeconomic status environment and consumption of traditional maize beer. The relationship between these variables and high anti- HHV-8 titers requires further, prospective study

    DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity

    Get PDF
    Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein

    Analysis of seismological and tsunami data from the 1993 Guam earthquake

    Full text link
    The fault parameters of the Guam earthquake of August 8, 1993 are estimated from seismological analyses, and the possibility of identifying the actual fault plane from tsunami waveforms is tested. The Centroid Moment Tensor solution of long-period surface waves shows one nodal plane shallowly dipping to the north and the other nodal plane steeply dipping to the south. The seismic moment is 3.5×10 20 Nm and the corresponding moment magnitude is 7.7. The Moment Tensor Rate Function inversion of P waves also yields a similar focal mechanism and seismic moment. The point source depth is estimated as 40–50 km.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43228/1/24_2004_Article_BF00874396.pd
    corecore