32 research outputs found

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging

    No full text
    Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer

    The WW Domain-Containing Proteins Interact with the Early Spliceosome and Participate in Pre-mRNA Splicing In Vivo

    No full text
    A growing body of evidence supports the coordination of mRNA synthesis and its subsequent processing events. Nuclear proteins harboring both WW and FF protein interaction modules bind to splicing factors as well as RNA polymerase II and may serve to link transcription with splicing. To understand how WW domains coordinate the assembly of splicing complexes, we used glutathione S-transferase fusions containing WW domains from CA150 or FBP11 in pull-down experiments with HeLa cell nuclear extract. The WW domains associate preferentially with the U2 small nuclear ribonucleoprotein and with splicing factors SF1, U2AF, and components of the SF3 complex. Accordingly, WW domain-associating factors bind to the 3′ part of a pre-mRNA to form a pre-spliceosome-like complex. We performed both in vitro and in vivo splicing assays to explore the role of WW/FF domain-containing proteins in this process. However, although CA150 is associated with the spliceosome, it appears to be dispensable for splicing in vitro. Nevertheless, in vivo depletion of CA150 substantially reduced splicing efficiency of a reporter pre-mRNA. Moreover, overexpression of CA150 fragments containing both WW and FF domains activated splicing and modulated alternative exon selection, probably by facilitating 3′ splice site recognition. Our results suggest an essential role of WW/FF domain-containing factors in pre-mRNA splicing that likely occurs in concert with transcription in vivo

    Peptide-mediated liposomal Doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models.

    Get PDF
    Lung cancer ranks among the most common malignancies, and is the leading cause of cancer-related mortality worldwide. Chemotherapy for lung cancer can be made more specific to tumor cells, and less toxic to normal tissues, through the use of ligand-mediated drug delivery systems. In this study, we investigated the targeting mechanism of the ligand-mediated drug delivery system using a peptide, SP5-2, which specifically binds to non-small cell lung cancer (NSCLC) cells. Conjugation of SP5-2 to liposomes enhanced the amount of drug delivered directly into NSCLC cells, through receptor-mediated endocytosis. Functional SP5-2 improved the therapeutic index of Lipo-Dox by enhancing therapeutic efficacy, reducing side effects, and increasing the survival rate of tumor-bearing mice in syngenic, metastatic and orthotopic animal models. Accumulation of SP5-2-conjugated liposomal doxorubicin (SP5-2-LD) in tumor tissues was 11.2-fold higher than that of free doxorubicin, and the area under the concentration-time curve (AUC0-72 hours) was increased 159.2-fold. Furthermore, the experiment of bioavailability was assessed to confirm that SP5-2 elevates the uptake of the liposomal drugs by the tumor cells in vivo. In conclusion, the use of SP5-2-conjugated liposomes enhances pharmacokinetic properties, improves efficacy and safety profiles, and allows for controlled biodistribution and drug release

    The RNA Binding Protein hnRNP Q Modulates the Utilization of Exon 7 in the Survival Motor Neuron 2 (SMN2) Gene▿ †

    No full text
    Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by the homozygous loss of the SMN1 gene. The human SMN2 gene has a C-to-T transition at position +6 of exon 7 and thus produces exon 7-skipping mRNAs. However, we observed an unexpectedly high level of exon 7-containing SMN2 transcripts as well as SMN protein in testis of smn−/− SMN2 transgenic mice. Using affinity chromatography, we identified several SMN RNA-associating proteins in mouse testis and human HeLa cells, including hnRNP Q. The major hnRNP Q isoform, Q1, directly bound SMN exon 7 in the vicinity of nucleotide +6. Overexpression of hnRNP Q1 promoted the inclusion of exon 7 in SMN2, probably by activating the use of its upstream 3′ splice site. However, the minor isoforms Q2/Q3 could antagonize the activity of hnRNP Q1 and induced exon 7 exclusion. Intriguingly, enhanced exon 7 inclusion was also observed upon concomitant depletion of three hnRNP Q isoforms. Thus, differential expression of hnRNP Q isoforms may result in intricate control of SMN precursor mRNA splicing. Here, we demonstrate that hnRNP Q is a splicing modulator of SMN, further underscoring the potential of hnRNP Q as a therapeutic target for SMA

    Monoclonal Antibodies against Nucleocapsid Protein of SARS-CoV-2 Variants for Detection of COVID-19

    No full text
    Mitigation strategies of the coronavirus disease 2019 (COVID-19) pandemic have been greatly hindered by the continuous emergence of SARS-CoV-2 variants. New sensitive, rapid diagnostic tests for the wide-spectrum detection of viral variants are needed. We generated a panel of 41 monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (NP) by using mice hybridoma techniques. Of these mAbs, nine exhibited high binding activities and were applied in latex-based lateral flow immunoassays (LFIAs). The LFIAs utilizing NP-mAb-7 and -40 had the best sensitivity and lowest limit of detection: 8 pg for purified NP and 625 TCID50/mL for the authentic virus (hCoV-19/Taiwan/4/2020). The specificity tests showed that the NP-mAb-40/7 LFIA strips did not cross-react with five human coronavirus strains or 20 other common respiratory pathogens. Importantly, we found that 10 NP mutants, including alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617.2) variants, could be detected by NP-mAb-40/7 LFIA strips. A clinical study (n = 60) of the NP-mAb-40/7 LFIA strips demonstrated a specificity of 100% and sensitivity of 90% in infected individuals with cycle threshold (Ct) values < 29.5. These anti-NP mAbs have strong potential for use in the clinical detection of SARS-CoV-2 infection, whether the virus is wild-type or a variant of concern

    Transmission electron microscopy reveals SP5-2-mediated internalization of liposomal doxorubicin in H460 cells.

    No full text
    <p>(A) Transmission electron micrographs of H460 cells at 37°C, following a 10-minute incubation with SP5-2-LD (final doxorubicin concentration of 2 µg/ml). Arrows indicate endosome-containing liposomes. (B) Percentage of cells containing internalized liposomes (positive rate), after incubation with either SP5-2-LD or MP5-2-LD. (C) The number of liposomes per vesicle were calculated using randomly selected endosomes in H460 cells (n = 30 in each group, P  = 1.23×10<sup>−7</sup>).</p

    Development of therapeutic antibodies for the treatment of diseases

    No full text
    It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US115.2billionin2018andisexpectedtogeneraterevenueof115.2 billion in 2018 and is expected to generate revenue of 150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed
    corecore