38 research outputs found

    On the frequency barrier of surface integral equations from a circuit point of view

    Get PDF
    Proceedings of the Progress In Electromagnetics Research Symposium, 2010, p. 46Session 1A4: Robust and E±cient Electromagnetic Solutions for Large-scale Problemspostprin

    Distributive radiation characterization based on the PEEC Method

    Get PDF
    The Conference program's website is located at http://www.2014apsursi.org/Papers/ViewPapers.asp?PaperNum=1977Session: Electromagnetic Interaction and CouplingOral Presentation: paper no. 430.3Summary form only given. The intentional and unintentional radiations are of great importance to wireless power transfer at the low frequency regime and antenna signal transportation at the higher frequency regime. Due to the rising speed of digital systems and thereby broad bandwidth of signal channels at all levels of electronic devices, it becomes more essential than ever to quantitively analyze, model, and illustrate how the energy is leaked out and which part is a greater contributor to the wanted or unwanted radiation. However, conventional computational methods seem to be not sufficient to answer these questions. They mostly focused on characterizing port based properties such as matching condition and insertion losses, or gave general efficiency description and radiation patterns. But it is not clear how the energy is radiated and coupled from different parts of the radiator. For computational electromagnetics algorithms, they blended all physical phenomena together and made the radiation property extraction and analysis not straightforward. In this work, we extend the partial element equivalent circuit (PEEC) method to distributive radiation analysis so that the radiation and coupling contributions from each segment of the whole radiator can be singled out. Instead of focusing on the conventional circuit modeling method of PEEC, we focus on distributive radiated power and transferred power calculation. To fully stick to the first principle without sacrificing reliability, dynamic Green's function is used throughout the proposed method, not only for the coupling term, but also for the self term. A great significance of this work is that it can help to provide eligible lossy model of antenna structures and meta surfaces more accurately, which avoids approximations and curve fitting methods frequently used in RF and microwave engineering designs to make the circuit model more physical. For example, we can benchmark the idea through the coupling and radiation- mechanism of arbitrarily electrical radiators and magnetic radiators. The radiated power and coupled power between coupled structure will be systematically calculated and analyzed using the proposed method. It gives much more insights than the conventional radiation impedance concept. This work was supported in part by Hong Kong GRF 713011, GRF 712612, and NSFC 61271158.published_or_final_versio

    Parameterized model order reduction of delayed systems using an interpolation approach with amplitude and frequency scaling coefficients

    Get PDF
    When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. We present an innovative PMOR technique for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, amplitude and frequency scaling coefficients and positive interpolation schemes. It is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript

    Systems of Differential Algebraic Equations in Computational Electromagnetics

    Full text link
    Starting from space-discretisation of Maxwell's equations, various classical formulations are proposed for the simulation of electromagnetic fields. They differ in the phenomena considered as well as in the variables chosen for discretisation. This contribution presents a literature survey of the most common approximations and formulations with a focus on their structural properties. The differential-algebraic character is discussed and quantified by the differential index concept

    Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants

    Get PDF
    Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world's men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m2). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia

    The derived equivalent circuit model for non-magnetized and magnetized graphene

    No full text

    A Model for Ground Bounce Investigation in Structures with Conducting Planes

    No full text

    The equivalent circuit model for electrostatic and magnetostatic biased tunable graphene as the absorption material

    No full text
    corecore