24 research outputs found

    Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

    Get PDF
    New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications

    Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities and Self-Repair Potential

    Get PDF
    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix

    Degree of conversion and mechanical properties of a BisGMA : TEGDMA composite as a function of the applied radiant exposure

    No full text
    Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc

    Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system

    No full text
    Objective. This study evaluated the degree of conversion (DC), maximum rate of cure (R(p)(max)), and polymerization stress (PS) developed by an experimental dental composite subjected to different irradiant energies (3,6,12, 24, or 48J/cm(2)) under constant irradiance (500 mw/cm(2)). Methods. DC and R(p)(max) were monitored for 10 min on the bottom surface of 2-mm thick disks and on 150-mu m thick films (representing the top of the specimen) using ATR-FTIR. PS was monitored for 10 min in 2-mm thick disks bonded to two glass rods (O = 5 mm) attached to a universal testing machine. One-way ANOVA/Tukey tests were used and differences in DC and R(p)(max) between top and bottom surfaces were examined using Student`s t-test. Statistical testing was performed at a pre-set alpha of 0.05. Results. For a given surface, DC showed differences among all groups, except at the top between 24 and 48 J/cm(2). R(p)(max) was similar among all groups at the same surface and statistically higher at the top surface. PS also showed significant differences among all groups. Data for 48 J/cm(2) were not obtained due to specimen failure at the glass/composite interface. Significance. Increases in irradiant exposure led to significant increases in DC and PS, but had no effect on R(p)(max) (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.FAPESP[03/13002-0]FAPESP[04/05975-0

    The Effect Of Organic Solvents On One-bottle Adhesives' Bond Strength To Enamel And Dentin.

    No full text
    This study evaluated the microtensile bond strength (pTBS) of ethanol/water- and acetone-based, one-bottle adhesive systems to enamel (E) and dentin (D) in the presence (P) or absence (A) of their respective solvents. Thirty-two freshly extracted third molars were flattened with 600-grit SiC paper and restored with Single Bond (SB) or Prime&Bond 2.1 (PB) according to the manufacturers' instructions and after full solvent elimination. The molars were divided into eight test groups (n = 4): G1-SB-E-P, G2-SB-E-A, G3-PBE-P, G4-PB-E-A, G5-SB-D-P, G6-SB-D-A, G7-PB-D-P and G8-PB-D-A. After applying the adhesive resins, composite crowns of approximately 8 mm were built up with TPH Spectrum composite. After 24-hour water storage, the specimens were serially sectioned bucco-lingually to obtain 0.8 mm slabs that were trimmed to an hourglass shape, approximately 0.8 mm2 at the bonded interface. The specimens were tested in tension using a universal testing machine (0.5 mm/minute). The results were statistically analyzed by ANOVA and Tukey test. The frequency of fracture mode was compared using the Kruskal-Wallis test. There were no statistically significant differences in mean bond strength among the groups restored with or without solvent for enamel. However, the results were significantly different for the dentin groups (MPa): G5-26.2 +/- 8.6a; G7-23.6 +/- 11.3ab; G6-12.8 +/- 2.1bc; G8-6.2 +/- 3.1c. SEM examination indicated that the dentin group failure modes were significantly different from the enamel groups. The results suggest that the presence of organic solvents does not influence microTBS to enamel. However, microTBS to dentin was significantly affected by the absence of solvents in the adhesive system.28700-

    Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins

    No full text
    Objective: Adding antimicrobial/anti-MMP quaternary ammonium methacrylates (QAMs) to comonomer blends should not weaken the mechanical properties of dental resins. This work evaluated the degree conversion and mechanical properties of BisGMA/TEGDMA/HEMA (60:30:10) containing 0-15 mass% QAMs A-E (A: 2-acryloxyethyltrimethyl ammonium chloride; B: [3-(methacryloylamino)propyl]trimethylammonium chloride; C: [2-(methacryloxy)ethyl] trimethyl ammonium chloride; D: diallyldimethyl ammonium chloride; E: 2-(methacryloyloxy) ethyltrimethyl ammonium methyl sulfate. Methods: Unfilled resins with and without QAM were placed on ATR-FTIR and light-polymerized for 20 s in a thin film at 30 \ub0C. Unfilled resin beams were casted from square hollow glass tubings. Half of the beams were tested after 3 days of drying (control); the other half were tested wet after 3 days of water storage. Results: Addition of QAMs in control resins significantly increased conversion 600 s after light termination, with the exception of 5% MAPTAC (p < 0.05). Increase of QAM content within a formulation significantly increased conversion. Control beams gave dry Young's moduli of 3c700 MPa. Addition of 5, 10 or 15 mass% QAMs produced significant reductions in dry Young's moduli except for 5% B or C. 15 mass% A, B and C lowered the wet Young's moduli of the resin beams by more than 30%. The ultimate tensile stress (UTS) of control dry resin was 89 \ub1 11 MPa. Addition of 5-10 mass% QAMs had no adverse effect on the dry UTS. After water storage, the UTS of all resin blends fell significantly (p < 0.05), especially when 15 wt% QAMs was added. Control dry beams gave fracture toughness (KIC) values of 0.88 \ub1 0.1 MPa m1/2. Wet values were significantly higher at 1.02 \ub1 0.06 (p < 0.05). KIC of dry beams varied from 0.85 \ub1 0.08 at 5% QAMs to 0.49 \ub1 0.05 at 15% QAMs. Wet beams gave KIC values of 1.02 \ub1 0.06 MPa m1/2 that fell to 0.23 \ub1 0.01 at 15% QAMs. Significance: Addition of 10% QAMs increased the degree of conversion of unfilled resins, but lowered wet toughness and UTS; addition of 15% QAMs lowered the mechanical properties of wet resins below acceptable levels
    corecore