884 research outputs found
Bicrossproduct structure of -Poincare group and non-commutative geometry
We show that the -deformed Poincar\'e quantum algebra proposed for
elementary particle physics has the structure of a Hopf agebra bicrossproduct
U(so(1,3))\cobicross T. The algebra is a semidirect product of the classical
Lorentz group acting in a deformed way on the momentum sector .
The novel feature is that the coalgebra is also semidirect, with a backreaction
of the momentum sector on the Lorentz rotations. Using this, we show that the
-Poincar\'e acts covariantly on a -Minkowski space, which we
introduce. It turns out necessarily to be deformed and non-commutative. We also
connect this algebra with a previous approach to Planck scale physics.Comment: 12 pages. Revision: minor typos correcte
The agrin gene codes for a family of basal lamina proteins that differ in function and distribution
We isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. Both proteins are the result of alternative splicing of the product of the agrin gene, but, unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrin-related protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin
Representation Theory of Quantized Poincare Algebra. Tensor Operators and Their Application to One-Partical Systems
A representation theory of the quantized Poincar\'e (-Poincar\'e)
algebra (QPA) is developed. We show that the representations of this algebra
are closely connected with the representations of the non-deformed Poincar\'e
algebra. A theory of tensor operators for QPA is considered in detail.
Necessary and sufficient conditions are found in order for scalars to be
invariants. Covariant components of the four-momenta and the Pauli-Lubanski
vector are explicitly constructed.These results are used for the construction
of some q-relativistic equations. The Wigner-Eckart theorem for QPA is proven.Comment: 18 page
Agrin isoforms and their role in synaptogenesis
Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system
Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7
Neutron inelastic scattering has been used to probe the spin dynamics of the
quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined
spin waves are observed at all energies and wavevectors, allowing us to
determine the parameters of the Hamiltonian of the system. The data are found
to be in excellent overall agreement with a minimal model that includes a
nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a
Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term
revealed by our study is broadly consistent with the model developed by Onose
et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although
our ratio of D=J = 0:18(1) is roughly half of their value and three times
larger than calculated by ab initio methods [2].Comment: 5 pages, 4 figure
Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.
Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways
Pulmonary Histoplasmosis Mimicking Metastatic Lung Cancer: A Case Report.
Histoplasmosis is a well-known endemic fungal infection but experience in non-endemic regions is often limited, which may lead to delayed diagnosis and extensive testing. The diagnosis can be especially challenging, typically when the disease first presents with pulmonary nodules accompanied by hilar and mediastinal lymphadenopathy, suggesting a much more common malignant disease. In this situation, a greater FDG uptake in draining lymph nodes in comparison with the associated lung nodule seen in [ <sup>18</sup> F]FDG-PET/CT, the so-called "flip-flop fungus" sign, can help to orientate further diagnostic measures. We report a case of a 56-year-old woman living in Switzerland, a non-endemic region, whose diagnosis of imported histoplasmosis was delayed since the findings had been initially misinterpreted as pulmonary malignancy. Further, histological workup was inconclusive due to lack of specific fungal staining, leading to ineffective treatment and non-resolving disease. This paper intends to highlight the pitfalls in diagnosing Histoplasma capsulatum and presents images of particularities of fungal infections in [ <sup>18</sup> F]FDG-PET/CT, which in our case showed a "flip-flop fungus" sign
Bound states and field-polarized Haldane modes in a quantum spin ladder
The challenge of one-dimensional systems is to understand their physics
beyond the level of known elementary excitations. By high-resolution neutron
spectroscopy in a quantum spin ladder material, we probe the leading
multiparticle excitation by characterizing the two-magnon bound state at zero
field. By applying high magnetic fields, we create and select the singlet
(longitudinal) and triplet (transverse) excitations of the fully spin-polarized
ladder, which have not been observed previously and are close analogs of the
modes anticipated in a polarized Haldane chain. Theoretical modelling of the
dynamical response demonstrates our complete quantitative understanding of
these states.Comment: 6 pages, 3 figures plus supplementary material 7 pages 5 figure
Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations
BRST analysis of topologically massive gauge theory: novel observations
A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed
with the "scalar" and "vector" gauge symmetry transformations. In our present
endeavor, we exploit the latter gauge symmetry transformations and perform the
Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D)
topologically massive non-Abelian 2-form gauge theory. We demonstrate the
existence of some novel features that have, hitherto, not been observed in the
context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form
and 3-form gauge theories. We comment on the differences between the novel
features that emerge in the BRST analysis of the "scalar" and "vector" gauge
symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version
to appear in EPJ
- …