10,938 research outputs found
Fuzzy coordinator in control problems
In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant
Electromagnetic Zero Point Field as Active Energy Source in the Intergalactic Medium
For over twenty years the possibility that the electromagnetic zero point
field (ZPF) may actively accelerate electromagnetically interacting particles
in regions of extremely low particle density (as those extant in intergalactic
space (IGS) with n < 1 particle/m^3 has been studied and analyzed. This
energizing phenomenon has been one of the few contenders for acceleration of
cosmic rays (CR), particularly at ultrahigh energies. The recent finding by the
AGASA collaboration (Phys. Rev. Lett., 81, 1163, 1998) that the CR energy
spectrum does not display any signs of the Greisen-Zatsepin-Kuzmin cut-off
(that should be present if these CR particles were indeed generated in
localized ultrahigh energies CR sources, as e.g., quasars and other highly
active galactic nuclei), may indicate the need for an acceleration mechanism
that is distributed throughout IGS as is the case with the ZPF. Other
unexplained phenomena that receive an explanation from this mechanism are the
generation of X-ray and gamma-ray backgrounds and the existence of Cosmic
Voids. However recently, a statistical mechanics kind of challenge to the
classical (not the quantum) version of the zero-point acceleration mechanism
has been posed (de la Pena and Cetto, The Quantum Dice, 1996). Here we briefly
examine the consequences of this challenge and a prospective resolution.Comment: 7 pages, no figure
Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE
On the core-halo distribution of dark matter in galaxies
We investigate the distribution of dark matter in galaxies by solving the
equations of equilibrium of a self-gravitating system of massive fermions
(`inos') at selected temperatures and degeneracy parameters within general
relativity. Our most general solutions show, as a function of the radius, a
segregation of three physical regimes: 1) an inner core of almost constant
density governed by degenerate quantum statistics; 2) an intermediate region
with a sharply decreasing density distribution followed by an extended plateau,
implying quantum corrections; 3) an asymptotic, classical
Boltzmann regime fulfilling, as an eigenvalue problem, a fixed value of the
flat rotation curves. This eigenvalue problem determines, for each value of the
central degeneracy parameter, the mass of the ino as well as the radius and
mass of the inner quantum core. Consequences of this alternative approach to
the central and halo regions of galaxies, ranging from dwarf to big spirals,
for SgrA*, as well as for the existing estimates of the ino mass, are outlined.Comment: 8 pages, 5 figures. Accepted for publication by MNRA
On the self-consistent general relativistic equilibrium equations of neutron stars
We address the existence of globally neutral neutron star configurations in
contrast with the traditional ones constructed by imposing local neutrality.
The equilibrium equations describing this system are the Einstein-Maxwell
equations which must be solved self-consistently with the general relativistic
Thomas-Fermi equation and -equilibrium condition. To illustrate the
application of this novel approach we adopt the Baym, Bethe, and Pethick (1971)
strong interaction model of the baryonic matter in the core and of the
white-dwarf-like material of the crust. We illustrate the crucial role played
by the boundary conditions satisfied by the leptonic component of the matter at
the interface between the core and the crust. For every central density an
entire new family of equilibrium configurations exists for selected values of
the Fermi energy of the electrons at the surface of the core. Each such
configuration fulfills global charge neutrality and is characterized by a
non-trivial electrodynamical structure. The electric field extends over a thin
shell of thickness between the core and the crust and
becomes largely overcritical in the limit of decreasing values of the crust
mass
- …
