52 research outputs found

    Severe 2010 Cold-Water Event Caused Unprecedented Mortality to Corals of the Florida Reef Tract and Reversed Previous Survivorship Patterns

    Get PDF
    Background Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity. Methodology/Principal Findings Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%–39%) was documented for inshore habitats where temperatures were \u3c11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1–2 orders of magnitude higher for most species. Conclusions/Significance The cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the “oases” of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover

    Description and Mechanisms of the Mid-Year Upwelling in the Southern Caribbean Sea from Remote Sensing and Local Data

    No full text
    The southern Caribbean Sea experiences strong coastal upwelling between December and April due to the seasonal strengthening of the trade winds. A second upwelling was recently detected in the southeastern Caribbean during June–August, when local coastal wind intensities weaken. Using synoptic satellite measurements and in situ data, this mid-year upwelling was characterized in terms of surface and subsurface temperature structures, and its mechanisms were explored. The mid-year upwelling lasts 6–9 weeks with satellite sea surface temperature (SST) ~1–2° C warmer than the primary upwelling. Three possible upwelling mechanisms were analyzed: cross-shore Ekman transport (csET) due to alongshore winds, wind curl (Ekman pumping/suction) due to wind spatial gradients, and dynamic uplift caused by variations in the strength/position of the Caribbean Current. These parameters were derived from satellite wind and altimeter observations. The principal and the mid-year upwelling were driven primarily by csET (78–86%). However, SST had similar or better correlations with the Ekman pumping/suction integrated up to 100 km offshore (WE100) than with csET, possibly due to its influence on the isopycnal depth of the source waters for the coastal upwelling. The mid-year upwelling was not caused by dynamic uplift but it might have been enhanced by the seasonal intensification of the Caribbean Current during that period

    On the spatial and temporal variability of upwelling in the southern Caribbean Sea and its influence on the ecology of phytoplankton and of the Spanish sardine (Sardinella aurita)

    No full text
    The Southern Caribbean Sea experiences a strong upwelling process along the coast from about 61°W to 75.5°W and 10-13°N. In this dissertation three aspects of this upwelling system are examined: (A) A mid-year secondary upwelling that was previously observed in the southeastern Caribbean Sea between June-July, when land based stations show a decrease in wind speed. The presence and effects of this upwelling along the whole southern Caribbean upwelling system were evaluated, as well as the relative forcing contribution of alongshore winds (Ekman Transport, ET) and wind-curl (Ekman Pumping, EP). (B) Stronger upwelling occurs in two particular regions, namely the eastern (63-65°W) and western (70-73°W) upwelling areas. However, the eastern area has higher fish biomass than the western area (78% and 18%, respectively, of the total small pelagic biomass of the southern Caribbean upwelling system). The upwelling dynamics along the southern Caribbean margin was studied to understand those regional variations on fish biomass. (C) The most important fishery in the eastern upwelling area off Venezuela is the Spanish sardine (Sardinella aurita). The sardine artisanal fishery is protected and only takes place up to ~10 km offshore. The effects of the upwelling cycle on the spatial distribution of S. aurita were studied. The main sources of data were satellite observations of sea surface temperature (SST), chlorophyll-a (Chl) and wind (ET and EP), in situ observations from the CARIACO Ocean Time-Series program, sardine biomass from 8 hydroacoustics surveys (1995-1998), and temperature profiles from the World Ocean Atlas 2005 used to calculate the depth of the Subtropical Underwater core (traced by the 22°C isotherm). The most important results of the study were as follows: (A) The entire upwelling system has a mid-year upwelling event between June-August, besides the primary upwelling process of December-April. This secondary event is short-lived (~5 weeks) and ~1.5°C warmer than the primary upwelling. Together, both upwelling events lead to about 8 months of cooler waters (-3, averaged from the coast to 100 km offshore) in the region. Satellite nearshore wind (~25 km offshore) remained high in the eastern upwelling area (\u3e 6 m s-1) and had a maximum in the western area (~10 m s-1) producing high offshore ET during the mid-year upwelling (vertical transport of 2.4 - 3.8 m3 s-1 per meter of coastline, for the eastern and western areas, respectively). Total coastal upwelling transport was mainly caused by ET (~90%). However, at a regional scale, there was intensification of the wind curl during June as well; as a result open-sea upwelling due to EP causes isopycnal shoaling of deeper waters enhancing the coastal upwelling. (B) The eastern and western upwelling areas had upwelling favorable winds all year round. Minimum / maximum offshore ET (from weekly climatologies) were 1.52 / 4.36 m3 s-1 per meter, for the western upwelling area; and 1.23 / 2.63 m3 s-1 per meter, for the eastern area. The eastern and western upwelling areas showed important variations in their upwelling dynamics. Annual averages in the eastern area showed moderate wind speeds (6.12 m s-1), shallow 22°C isotherm (85 m), cool SSTs (25.24°C), and phytoplankton biomass of 1.65 mg m-3. The western area has on average stronger wind speeds (8.23 m s-1) but a deeper 22°C isotherm (115 m), leading to slightly warmer SSTs (25.53°C) and slightly lower phytoplankton biomass (1.15 mg m-3). We hypothesize that the factors that most inhibits fish production in the western upwelling area are the high level of wind-induced turbulence and the strong offshore ET. (C) Hydroacoustics values of Sardinella aurita biomass (sAsardine) and the number of small pelagics schools collected in the eastern upwelling region off northeast Venezuela were compared with environmental variables (satellite products of SST, SST gradients, and Chl -for the last two cruises-) and spatial variables (distance to upwelling foci and longitude-latitude). These data were examined using Generalized Additive Models. During the strongest upwelling season (February-March) sAsardine was widely distributed in the cooler, Chl rich upwelling plumes over the wide (~70km) continental shelf. During the weakest upwelling season (September-October) sAsardine was collocated with the higher Chl (1-3 mg m-3) found within the first 10 km from the upwelling foci; this increases Spanish sardine availability (and possibly the catchability) for the artisanal fishery. These results imply that during prolonged periods of weak upwelling the environmentally stressed (due to food scarceness) Spanish sardine population would be closer to the coast and more available to the fishery, which could easily turn into overfishing. After two consecutive years of weak upwelling (2004-2005) Spanish sardine fishery crashed and as of 2011 has not recovered to previous yield; however during 2004 a historical capture peak occurred. We hypothesize that this Spanish sardine collapse was caused by a combination of sustained stressful environmental conditions and of overfishing, due to the increased catchability of the stock caused by aggregation of the fish in the cooler coastal upwelling cells during the anomalous warm upwelling season

    On the spatial and temporal variability of upwelling in the southern Caribbean Sea and its influence on the ecology of phytoplankton and of the Spanish sardine (Sardinella aurita)

    Get PDF
    The Southern Caribbean Sea experiences a strong upwelling process along the coast from about 61°W to 75.5°W and 10-13°N. In this dissertation three aspects of this upwelling system are examined: (A) A mid-year secondary upwelling that was previously observed in the southeastern Caribbean Sea between June-July, when land based stations show a decrease in wind speed. The presence and effects of this upwelling along the whole southern Caribbean upwelling system were evaluated, as well as the relative forcing contribution of alongshore winds (Ekman Transport, ET) and wind-curl (Ekman Pumping, EP). (B) Stronger upwelling occurs in two particular regions, namely the eastern (63-65°W) and western (70-73°W) upwelling areas. However, the eastern area has higher fish biomass than the western area (78% and 18%, respectively, of the total small pelagic biomass of the southern Caribbean upwelling system). The upwelling dynamics along the southern Caribbean margin was studied to understand those regional variations on fish biomass. (C) The most important fishery in the eastern upwelling area off Venezuela is the Spanish sardine (Sardinella aurita). The sardine artisanal fishery is protected and only takes place up to ~10 km offshore. The effects of the upwelling cycle on the spatial distribution of S. aurita were studied. The main sources of data were satellite observations of sea surface temperature (SST), chlorophyll-a (Chl) and wind (ET and EP), in situ observations from the CARIACO Ocean Time-Series program, sardine biomass from 8 hydroacoustics surveys (1995-1998), and temperature profiles from the World Ocean Atlas 2005 used to calculate the depth of the Subtropical Underwater core (traced by the 22°C isotherm). The most important results of the study were as follows: (A) The entire upwelling system has a mid-year upwelling event between June-August, besides the primary upwelling process of December-April. This secondary event is short-lived (~5 weeks) and ~1.5°C warmer than the primary upwelling. Together, both upwelling events lead to about 8 months of cooler waters (-3, averaged from the coast to 100 km offshore) in the region. Satellite nearshore wind (~25 km offshore) remained high in the eastern upwelling area (\u3e 6 m s-1) and had a maximum in the western area (~10 m s-1) producing high offshore ET during the mid-year upwelling (vertical transport of 2.4 - 3.8 m3 s-1 per meter of coastline, for the eastern and western areas, respectively). Total coastal upwelling transport was mainly caused by ET (~90%). However, at a regional scale, there was intensification of the wind curl during June as well; as a result open-sea upwelling due to EP causes isopycnal shoaling of deeper waters enhancing the coastal upwelling. (B) The eastern and western upwelling areas had upwelling favorable winds all year round. Minimum / maximum offshore ET (from weekly climatologies) were 1.52 / 4.36 m3 s-1 per meter, for the western upwelling area; and 1.23 / 2.63 m3 s-1 per meter, for the eastern area. The eastern and western upwelling areas showed important variations in their upwelling dynamics. Annual averages in the eastern area showed moderate wind speeds (6.12 m s-1), shallow 22°C isotherm (85 m), cool SSTs (25.24°C), and phytoplankton biomass of 1.65 mg m-3. The western area has on average stronger wind speeds (8.23 m s-1) but a deeper 22°C isotherm (115 m), leading to slightly warmer SSTs (25.53°C) and slightly lower phytoplankton biomass (1.15 mg m-3). We hypothesize that the factors that most inhibits fish production in the western upwelling area are the high level of wind-induced turbulence and the strong offshore ET. (C) Hydroacoustics values of Sardinella aurita biomass (sAsardine) and the number of small pelagics schools collected in the eastern upwelling region off northeast Venezuela were compared with environmental variables (satellite products of SST, SST gradients, and Chl -for the last two cruises-) and spatial variables (distance to upwelling foci and longitude-latitude). These data were examined using Generalized Additive Models. During the strongest upwelling season (February-March) sAsardine was widely distributed in the cooler, Chl rich upwelling plumes over the wide (~70km) continental shelf. During the weakest upwelling season (September-October) sAsardine was collocated with the higher Chl (1-3 mg m-3) found within the first 10 km from the upwelling foci; this increases Spanish sardine availability (and possibly the catchability) for the artisanal fishery. These results imply that during prolonged periods of weak upwelling the environmentally stressed (due to food scarceness) Spanish sardine population would be closer to the coast and more available to the fishery, which could easily turn into overfishing. After two consecutive years of weak upwelling (2004-2005) Spanish sardine fishery crashed and as of 2011 has not recovered to previous yield; however during 2004 a historical capture peak occurred. We hypothesize that this Spanish sardine collapse was caused by a combination of sustained stressful environmental conditions and of overfishing, due to the increased catchability of the stock caused by aggregation of the fish in the cooler coastal upwelling cells during the anomalous warm upwelling season

    CARIACO Datasets

    No full text
    The project collected different parameters on monthly cruises to one station from 1995 until 2017. This record contains several master excel files with different variables; for example: a general master for diverse hydrographic variables from Niskin bottle, individual masters for HPLC pigments, CTD profiles, phytoplankton and zooplankton taxonomy and biomass, one master of extra cruises for Biogeochemical and microbiological data, etc

    CARIACO Datasets

    No full text
    The project collected different parameters on monthly cruises to one station from 1995 until 2017. This record contains several master excel files with different variables; for example: a general master for diverse hydrographic variables from Niskin bottle, individual masters for HPLC pigments, CTD profiles, phytoplankton and zooplankton taxonomy and biomass, one master of extra cruises for Biogeochemical and microbiological data, etc

    The Southern Caribbean Upwelling System: Sea Surface Temperature, Wind Forcing and Chlorophyll Concentration Patterns

    No full text
    Sixteen years of sea surface temperature (SST, 1994-2009) were used to characterize the southern Caribbean upwelling system. This system extends from 61-75.5°W and 10-12.5°N, with 21 upwelling foci clustered in seven groups differentiated by their SST cycles. Two of those groups had the strongest coastal upwelling: the \u27eastern area\u27 (63-65°W) and the \u27western area\u27 (70-73°W). The literature reports that the eastern and western upwelling areas hold 78% and 18% of the small pelagic biomass within the upwelling system, respectively. We looked into variations of the upwelling dynamics in those areas using seasonal cycles of satellite SST, chlorophyll-a (Chl) and sea-wind, as well as climatological hydrographic data from the World Ocean Atlas. Comparing their annual averages, the eastern area featured the lowest SST (25.24°C) and the highest Chl (1.65mgm -3 ); it has moderate wind intensity (6.12ms -1 ) and shallower 22°C isotherm (85m). The western area had stronger winds (8.23ms -1 ) but deeper 22°C isotherm (115m), slightly higher SST (25.53°C) and moderate Chl (1.15mgm -3 ). The upwelling in the eastern area was more prolonged than in the western area (SST \u3c26°C during 8.5 and 6.9 months, respectively). According to the \u27optimal environmental window\u27 theory, small clupeoid recruitment is a dome-shaped function of the upwelling intensity, turbulence and SST, with an optimum wind speed around 5-6ms -1 . The eastern upwelling area wind speed is close to this optimum value. The western upwelling area shows much higher wind speed that causes high level of turbulence and strong offshore transport that could hinder small pelagics recruitment in that area

    Severe 2010 Cold-Water Event Caused Unprecedented Mortality to Corals of the Florida Reef Tract and Reversed Previous Survivorship Patterns

    No full text
    Background: Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity. Methodology/Principal Findings: Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%-39%) was documented for inshore habitats where temperatures were \u3c11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1-2 orders of magnitude higher for most species. Conclusions/Significance: The cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the oases of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover

    Description and Mechanisms of the Mid-Year Upwelling in the Southern Caribbean Sea from Remote Sensing and Local Data

    Get PDF
    The southern Caribbean Sea experiences strong coastal upwelling between December and April due to the seasonal strengthening of the trade winds. A second upwelling was recently detected in the southeastern Caribbean during June–August, when local coastal wind intensities weaken. Using synoptic satellite measurements and in situ data, this mid-year upwelling was characterized in terms of surface and subsurface temperature structures, and its mechanisms were explored. The mid-year upwelling lasts 6–9 weeks with satellite sea surface temperature (SST) ~1–2° C warmer than the primary upwelling. Three possible upwelling mechanisms were analyzed: cross-shore Ekman transport (csET) due to alongshore winds, wind curl (Ekman pumping/suction) due to wind spatial gradients, and dynamic uplift caused by variations in the strength/position of the Caribbean Current. These parameters were derived from satellite wind and altimeter observations. The principal and the mid-year upwelling were driven primarily by csET (78–86%). However, SST had similar or better correlations with the Ekman pumping/suction integrated up to 100 km offshore (WE100) than with csET, possibly due to its influence on the isopycnal depth of the source waters for the coastal upwelling. The mid-year upwelling was not caused by dynamic uplift but it might have been enhanced by the seasonal intensification of the Caribbean Current during that period

    Vertical Structure and trends in CO2 at the CARIACO Ocean Time Series Station: 1995-2017

    No full text
    Abstract: Changes in the vertical structure of pH (total proton scale at 25 °C or pHT), total alkalinity, total CO2 (TCO2), and partial pressure of CO2 (pCO2) were examined at the CARIACO Ocean Time Series station (10Âş30’N, 64Âş40’W) from December 1995 to January 2017. Long-term trends were studied in the three water masses present in the Cariaco Basin: the surface layer (SL, located between 0-100 m depth), the Subtropical Underwater (SUW, with minimum depths between the surface and 105 m and maximums between 30-165 m depending on the season) and the deep water (DW, with minimum depths between 175-380 m to the bottom). The seasonal detrended TCO2 normalized to a constant salinity (nTCO2) showed a positive trend 2.23 ± 0.43 µmol kg-1 yr-1 in the SL, associated with an increase in pCO2 (3.06 ± 0.42 µatm yr-1) and a decrease in pH (-0.0028 ± 0.0004 pH yr-1). SUW and DW also exhibited increasing trends nTCO2 (1.82 ± 0.42 and 4.46 ± 0.32 µmol kg-1 yr-1, respectively). Between 2002 and 2017, an increase of 67 µmol kg-1 of TCO2 was observed below 300 m at the CARIACO station. Overall, acidification trends were observed at the Cariaco station from the surface to the bottom, with an average of ~ -0.003 ± 0.0004 pH units per year. Air-sea CO2 flux calculations showed an average net evasion of CO2 from the sea to the air of 0.6 ± 2.2 mol C m-2 yr-1 for the period of observation.   Estructura vertical y tendencias en el CO2 en la estaciĂłn Serie de Tiempo CARIACO: 1995-2017 Resumen: Se examinaron cambios en la estructura vertical del pH (escala total de protones a 25 °C o pHT), la alcalinidad total, el CO2 total (TCO2) y la presiĂłn parcial de CO2 (pCO2) en la estaciĂłn oceanográfica serie de tiempo CARIACO (10Âş30'N, 64Âş40'O) desde diciembre de 1995 hasta enero de 2017. Se estudiaron las tendencias a largo plazo en las tres masas de agua presentes en la cuenca de Cariaco: la capa superficial (SL, ubicada entre 0-100 m), la Subtropical (SUW, con profundidades mĂ­nimas entre la superficie y 105 m y máximas entre 30-165 m dependiendo de la temporada), y las aguas profundas (DW, con profundidades mĂ­nimas entre 175-380 m hasta el fondo). El TCO2 desestacionalizado y normalizado a una salinidad constante (nTCO2) mostrĂł una tendencia positiva de 2,23 ± 0,43 ÎĽmol kg-1 año-1 en la capa SL, relacionada con un aumento en pCO2 (3.06 ± 0.42 ÎĽatm año-1) y una disminuciĂłn del pH (-0.0028 ± 0.0004 pH año-1). SUW y DW tambiĂ©n mostraron tendencias crecientes en nTCO2 (1,82 ± 0,42 y 4,46 ± 0,32 ÎĽmol kg-1 año-1, respectivamente). Entre 2002 y 2017, se observĂł un aumento de 67 ÎĽmol kg-1 de TCO2 por debajo de 300 m en la estaciĂłn CARIACO. En general, se observaron tendencias de acidificaciĂłn en la estaciĂłn Cariaco desde la superficie hasta el fondo, con un promedio de ~ -0.003 ± 0.0004 unidades de pH por año. Los cálculos del flujo de CO2 entre el aire y el ocĂ©ano mostraron una evasiĂłn neta promedio de CO2 desde el mar al aire de 0.6 ± 2.2 mol C m-2 año-1 durante el perĂ­odo de observaciĂłn
    • …
    corecore