488 research outputs found

    Structural relaxation of E' gamma centers in amorphous silica

    Full text link
    We report experimental evidence of the existence of two variants of the E' gamma centers induced in silica by gamma rays at room temperature. The two variants are distinguishable by the fine features of their line shapes in paramagnetic resonance spectra. These features suggest that the two E' gamma differ for their topology. We find a thermally induced interconversion between the centers with an activation energy of about 34 meV. Hints are also found for the existence of a structural configuration of minimum energy and of a metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Possibility of cyclic Turnarounds In Brane-world Scenario: Phantom Energy Accretion onto Black Holes and its consequences

    Full text link
    A universe described by braneworlds is studied in a cyclic scenario. As expected such an oscillating universe will undergo turnarounds, whenever the phantom energy density reaches a critical value from either side. It is found that a universe described by RSII brane model will readily undergo oscillations if, either the brane tension, \lambda, or the bulk cosmological constant, \Lambda_{4}, is negative. The DGP brane model does not readily undergo cyclic turnarounds. Hence for this model a modified equation is proposed to incorporate the cyclic nature. It is found that there is always a remanent mass of a black hole at the verge of a turnaround. Hence contrary to known results in literature, it is found that the destruction of black holes at the turnaround is completely out of question. Finally to alleviate, if not solve, the problem posed by the black holes, it is argued that the remanent masses of the black holes do not act as a serious defect of the model because of Hawking evaporation.Comment: 10 pages, 2 figures; International Journal of Theoretical Physics (2012

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio

    Density waves and 1/f1/f density fluctuations in granular flow

    Full text link
    We simulate the granular flow in a narrow pipe with a lattice-gas automaton model. We find that the density in the system is characterized by two features. One is that spontaneous density waves propagate through the system with well-defined shapes and velocities. The other is that density waves are so distributed to make the power spectra of density fluctuations as 1/fα1/f^{\alpha} noise. Three important parameters make these features observable and they are energy dissipation, average density and the rougness of the pipe walls.Comment: Latex (with ps files appended

    Velocity and density profiles of granular flow in channels using lattice gas automaton

    Full text link
    We have performed two-dimensional lattice-gas-automaton simulations of granular flow between two parallel planes. We find that the velocity profiles have non-parabolic distributions while simultaneously the density profiles are non-uniform. Under non-slip boundary conditions, deviation of velocity profiles from the parabolic form of newtonian fluids is found to be characterized solely by ratio of maximal velocity at the center to the average velocity, though the ratio depends on the model parameters in a complex manner. We also find that the maximal velocity (umaxu_{max}) at the center is a linear function of the driving force (g) as umax=αg−ήu_{max} = \alpha g - \delta with non-zero ÎŽ\delta in contrast with newtonian fluids. Regarding density profiles, we observe that densities near the boundaries are higher than those in the center. The width of higher densities (above the average density) relative to the channel width is a decreasing function of a variable which scales with the driving force (g), energy dissipation parameter (Ï”\epsilon) and the width of the system (L) as gÎŒLÎœ/Ï”g^{\mu} L^{\nu}/\epsilon with exponents ÎŒ=1.4±0.1\mu = 1.4 \pm 0.1 and Îœ=0.5±0.1\nu = 0.5 \pm 0.1. A phenomenological theory based on a scaling argument is presented to interpret these findings.Comment: Latex, 15 figures, to appear in PR

    Magnetic Anisotropy in the Molecular Complex V15

    Full text link
    We apply degenerate perturbation theory to investigate the effects of magnetic anisotropy in the magnetic molecule V15. Magnetic anisotropy is introduced via Dzyaloshinskii-Moriya (DM) interaction in the full Hilbert space of the system. Our model provides an explanation for the rounding of transitions in the magnetization as a function of applied field at low temperature, from which an estimate for the DM interaction is found. We find that the calculated energy differences of the lowest energy states are consistent with the available data. Our model also offers a novel explanation for the hysteretic nature of the time-dependent magnetization data.Comment: Final versio

    Dynamics of Interacting Generalized Cosmic Chaplygin gas in Brane-world scenario

    Full text link
    In this work we explore the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of Generalized Cosmic Chaplygin gas is consistent with the late cosmic acceleration, but not without satisfying certain conditions. It has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities were studied and our models were declared totally free from any types of such singularities. Finally, some cosmographic parameters were also briefly studied. Our investigation led to the fact that although GCCG with a far lesser negative pressure compared to other DE models, can overcome the relatively weaker gravity of RS II brane, with the help of the negative brane tension, yet for the DGP brane model with much higher gravitation, the incompetency of GCCG is exposed, and it cannot produce the accelerating scenario until it reaches the phantom era.Comment: 34 pages, 30 figures. arXiv admin note: substantial text overlap with arXiv:1204.3531, arXiv:1109.1481, arXiv:1109.357
    • 

    corecore