375 research outputs found
Structural relaxation of E' gamma centers in amorphous silica
We report experimental evidence of the existence of two variants of the E'
gamma centers induced in silica by gamma rays at room temperature. The two
variants are distinguishable by the fine features of their line shapes in
paramagnetic resonance spectra. These features suggest that the two E' gamma
differ for their topology. We find a thermally induced interconversion between
the centers with an activation energy of about 34 meV. Hints are also found for
the existence of a structural configuration of minimum energy and of a
metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Model Exact Low-Lying States and Spin Dynamics in Ferric Wheels; Fe to Fe
Using an efficient numerical scheme that exploits spatial symmetries and
spin-parity, we have obtained the exact low-lying eigenstates of exchange
Hamiltonians for ferric wheels up to Fe. The largest calculation
involves the Fe ring which spans a Hilbert space dimension of about 145
million for M=0 subspace. Our calculated gaps from the singlet ground state
to the excited triplet state agrees well with the experimentally measured
values. Study of the static structure factor shows that the ground state is
spontaneously dimerized for ferric wheels. Spin states of ferric wheels can be
viewed as quantized states of a rigid rotor with the gap between the ground and
the first excited state defining the inverse of moment of inertia. We have
studied the quantum dynamics of Fe as a representative of ferric wheels.
We use the low-lying states of Fe to solve exactly the time-dependent
Schr\"odinger equation and find the magnetization of the molecule in the
presence of an alternating magnetic field at zero temperature. We observe a
nontrivial oscillation of magnetization which is dependent on the amplitude of
the {\it ac} field. We have also studied the torque response of Fe as a
function of magnetic field, which clearly shows spin-state crossover.Comment: Revtex, 24 pages, 8 eps figure
Magnetization of Mn_12 Ac in a slowly varying magnetic field: an ab initio study
Beginning with a Heisenberg spin Hamiltonian for the manganese ions in the
Mn_12 Ac molecule, we find a number of low-energy states of the system. We use
these states to solve the time-dependent Schrodinger equation and find the
magnetization of the molecule in the presence of a slowly varying magnetic
field. We study the effects of the field sweep rate, fourth order anisotropic
spin interactions and a transverse field on the weights of the different states
as well as the magnetization steps which are known to occur in the hysteresis
plots in this system. We find that the fourth order term and a slow field sweep
rate are crucial for obtaining prominent steps in magnetization in the
hysteresis plots.Comment: LaTeX, 11 pages, 12 eps figure
Density waves and density fluctuations in granular flow
We simulate the granular flow in a narrow pipe with a lattice-gas automaton
model. We find that the density in the system is characterized by two features.
One is that spontaneous density waves propagate through the system with
well-defined shapes and velocities. The other is that density waves are so
distributed to make the power spectra of density fluctuations as
noise. Three important parameters make these features observable and they are
energy dissipation, average density and the rougness of the pipe walls.Comment: Latex (with ps files appended
Velocity and density profiles of granular flow in channels using lattice gas automaton
We have performed two-dimensional lattice-gas-automaton simulations of
granular flow between two parallel planes. We find that the velocity profiles
have non-parabolic distributions while simultaneously the density profiles are
non-uniform. Under non-slip boundary conditions, deviation of velocity profiles
from the parabolic form of newtonian fluids is found to be characterized solely
by ratio of maximal velocity at the center to the average velocity, though the
ratio depends on the model parameters in a complex manner. We also find that
the maximal velocity () at the center is a linear function of the
driving force (g) as with non-zero in
contrast with newtonian fluids. Regarding density profiles, we observe that
densities near the boundaries are higher than those in the center. The width of
higher densities (above the average density) relative to the channel width is a
decreasing function of a variable which scales with the driving force (g),
energy dissipation parameter () and the width of the system (L) as
with exponents and . A phenomenological theory based on a scaling argument is presented to
interpret these findings.Comment: Latex, 15 figures, to appear in PR
Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries
The determination of the energy spectra of small spin systems as for instance
given by magnetic molecules is a demanding numerical problem. In this work we
review numerical approaches to diagonalize the Heisenberg Hamiltonian that
employ symmetries; in particular we focus on the spin-rotational symmetry SU(2)
in combination with point-group symmetries. With these methods one is able to
block-diagonalize the Hamiltonian and thus to treat spin systems of
unprecedented size. In addition it provides a spectroscopic labeling by
irreducible representations that is helpful when interpreting transitions
induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance
(NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the
reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
Pembrolizumab and Cabozantinib in Recurrent Metastatic Head and Neck Squamous Cell Carcinoma: a Phase 2 Trial
Anti-programmed cell death protein 1 (PD-1) therapy is a standard of care in recurrent metastatic head and neck squamous cell carcinoma (RMHNSCC). Vascular endothelial growth factor inhibitors, including tyrosine kinase inhibitors, have immunomodulatory properties and have offered promising results when combined with anti-PD-1 agents. We conducted a phase 2, multicenter, single-arm trial of pembrolizumab and cabozantinib in patients with RMHNSCC who had Response Evaluation Criteria in Solid Tumors v.1.1 measurable disease and no contraindications to either agent. We assessed the primary end points of tolerability and overall response rate to the combination with secondary end points of progression-free survival and overall survival and performed correlative studies with PDL-1 and combined positive score, CD8+ T cell infiltration and tumor mutational burden. A total of 50 patients were screened and 36 were enrolled with 33 evaluable for response. The primary end point was met, with 17 out of 33 patients having a partial response (52%) and 13 (39%) stable disease with an overall clinical benefit rate of 91%. Median and 1-year overall survival were 22.3 months (95% confidence interval (CI) = 11.7â32.9) and 68.4% (95 % CI = 45.1%â83.5%), respectively. Median and 1-year progression-free survival were 14.6 months (95% CI = 8.2â19.6) and 54% (95% CI = 31.5%â72%), respectively. Grade 3 or higher treatment-related adverse events included increased aspartate aminotransferase (n = 2, 5.6%). In 16 patients (44.4%), the dose of cabozantinib was reduced to 20 mg daily. The overall response rate correlated positively with baseline CD8+ T cell infiltration. There was no observed correlation between tumor mutational burden and clinical outcome. Pembrolizumab and cabozantinib were well tolerated and showed promising clinical activity in patients with RMHNSCC. Further investigation of similar combinations are needed in RMHNSCC
Relational approaches to poverty in rural India: social, ecological and technical dynamics
Poverty is now widely recognised as multidimensional, with indicators including healthcare, housing and sanitation. Yet, relational approaches that foreground political-cultural processes remain marginalised in policy discourses. Focusing on India, we review a wide range of relational approaches to rural poverty. Beginning with early approaches that focus on structural reproduction of class, caste and to a lesser extent gender inequality, we examine new relational approaches developed in the last two decades. The new approaches examine diverse ways in which poverty is experienced and shapes mobilisations against deprivation. They draw attention to poor peopleâs own articulations of deprivation and alternate conceptions of well-being. They also show how intersecting inequalities of class, caste and gender shape governance practices and political movements. Despite these important contributions, the new relational approaches pay limited attention to technologies and ecologies in shaping the experience of poverty. Reviewing studies on the Green Revolution and wider agrarian transformations in India, we then sketch the outlines of a hybrid relational approach to poverty that combines socio-technical and -ecological dynamics. We argue that such an approach is crucial to challenge narrow economising discourses on poverty and to bridge the policy silos of poverty alleviation and (environmentally) sustainable development
- âŠ