34 research outputs found

    Measuring monetary policy and its impact on the bond market of an emerging economy

    Get PDF
    In view of multiple instruments used by many central banks in emerging market economies, we derive a composite measure of monetary policy for India and assess its impact on the yield curve. Our results show that while monetary policy has the dominant impact among macroeconomic variables on the entire term structure, it is particularly strong at the shorter end and on credit spreads. Shifts in the level of the government yield curve and credit spreads also lead to changes in monetary policy. In terms of robustness, our measure performs better than a narrative based measure of monetary policy available in the literature

    Measuring monetary policy and its impact on the bond market of an emerging economy

    Get PDF
    In view of multiple instruments used by many central banks in emerging market economies, we derive a composite measure of monetary policy for India and assess its impact on the yield curve. Our results show that while monetary policy has the dominant impact among macroeconomic variables on the entire term structure, it is particularly strong at the shorter end and on credit spreads. Shifts in the level of the government yield curve and credit spreads also lead to changes in monetary policy. In terms of robustness, our measure performs better than a narrative based measure of monetary policy available in the literature

    Equation of State of Fluid Methane from First Principles with Machine Learning Potentials.

    Get PDF
    The predictive simulation of molecular liquids requires potential energy surface (PES) models that are not only accurate but also computationally efficient enough to handle the large systems and long time scales required for reliable prediction of macroscopic properties. We present a new approach to the systematic approximation of the first-principles PES of molecular liquids using the GAP (Gaussian Approximation Potential) framework. The approach allows us to create potentials at several different levels of accuracy in reproducing the true PES and thus to determine the level of quantum chemistry that is necessary to accurately predict macroscopic properties. We test the approach by building a series of many-body potentials for liquid methane (CH4), which is difficult to model from first principles because its behavior is dominated by weak dispersion interactions with a significant many-body component. The increasing accuracy of the potentials in predicting the bulk density correlates with their fidelity to the true PES, whereas the trend with the empirical potentials tested is surprisingly the opposite. We conclude that an accurate, consistent prediction of its bulk density across wide ranges of temperature and pressure requires not only many-body dispersion but also quantum nuclear effects to be modeled accurately

    An alternate model for magnetization plateaus in the molecular magnet V_15

    Get PDF
    Starting from an antiferromagnetic Heisenberg Hamiltonian for the fifteen spin-1/2 ions in V_15, we construct an effective spin Hamiltonian involving eight low-lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We numerically solve the time-dependent Schrodinger equation of this system, and obtain the magnetization as a function of temperature in a time-dependent magnetic field. The magnetization exhibits unusual patterns of hysteresis and plateaus as the field sweep rate and temperature are varied. The observed plateaus are not due to quantum tunneling but are a result of thermal averaging. Our results are in good agreement with recent experimental observations.Comment: Revtex, 4 pages, 5 eps figure

    Properties of a mixed-valent iron compound with the kagomélattice

    Get PDF
    An organically templated iron sulfate of the formula [HN(CH2)6NH][FeIIIFe2IIF6(SO4)2]·[H3O] possessing the kagomé lattice has been prepared and characterized by single-crystal crystallography and other techniques. This mixed-valent iron compound shows complex magnetic properties including spin-glass behavior and magnetic hysteresis. The low-temperature specific heat data show deviation from the T2 behavior found in two-dimensional frustrated systems. Simple calculations have been carried out to understand the properties of this kagomé compound

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure
    corecore