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The predictive simulation of molecular liquids requires potential energy surface

(PES) models that are not only accurate, but computationally efficient enough to han-

dle the large systems and long time scales required for reliable prediction of macroscopic

properties. We present a new approach to the systematic approximation of the first-

principles PES of molecular liquids using the GAP (Gaussian Approximation Potential)

framework. The approach allows us to create potentials at several different levels of

accuracy in reproducing the true PES, and thus to determine the level of quantum

chemistry that is necessary to accurately predict macroscopic properties. We test the

approach by building a series of many-body potentials for liquid methane (CH4), which

is difficult to model from first principles because its behaviour is dominated by weak

dispersion interactions with a significant many-body component. The increasing accu-

racy of the potentials in predicting the bulk density correlates with their fidelity to the

true PES, whereas the trend with the empirical potentials tested is surprisingly the

opposite. We conclude that an accurate, consistent prediction of its bulk density across

wide ranges of temperature and pressure requires not only many-body dispersion, but

also quantum nuclear effects to be modelled accurately.

1 Introduction

The accurate simulation of molecular liquids is a problem of great scientific and industrial

importance. We not only would like to be able to test the predictions of our models against

experimental benchmarks to see where they need to be refined, but we also need to make

predictions for new compounds or mixtures in order to identify the most promising can-

didates for future applications. When modelling molecular liquids one is typically obliged

to trade off accuracy in the description of the potential energy surface and errors due to

insufficient sampling. In this work we aim to perform simulations of ab initio quality but

with the orders of magnitude boost in computational efficiency afforded by high dimensional

regression using techniques analogous to those in machine learning. Following notable recent
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success for approximating the energy of individual molecules,1–5 here we tackle the problem

of intermolecular interactions. By breaking down the total interaction potential into different

components, we show explicitly that they are all modelled sufficiently accurately, and thus

we obtain the right answers for the right reasons rather than due to uncontrolled cancella-

tion of errors. Specifically, we create Gaussian approximation potentials (GAPs)6–8 for liquid

methane, the simplest alkane, which is inherently difficult to model because its behaviour is

dominated by weak dispersion interactions. The condensed phase of methane is interesting

in its own right, notably for its role in the geochemistry of Titan,9,10 in the atmospheres of

gas giants,11 and elsewhere in the solar system.12 Its condensed-phase mixtures with water

are subjects of recent research; clathrates are the best known example, though the recently

uncovered puzzle of the solubility of liquid methane in water at high pressure13 shows there

is plenty more fertile ground for investigation. This work also opens the door to potentials

that can model larger hydrocarbons under extreme temperatures and pressures;14,15 such a

potential would enable new research in numerous scientific and engineering applications.16–18

There is a long history of modelling liquids at the atomistic scale with Monte Carlo

(MC) or molecular dynamics (MD) methods. The interactions between constituent particles

are often modelled using analytical potentials, which are a combination of a few simple,

physically motivated expressions, such as the venerable Lennard-Jones (L-J) potential19 and

the many subsequent variations or extensions of its basic form.20–25 These potentials contain

empirical parameters which are usually optimized until the simulations reproduce specific

sections of the experimental equation of state.

Recent potentials show a trend of more closely representing the underlying quantum

mechanical potential energy surface, for example by adding anharmonic and cross terms to

the covalent forces to arrive at a more faithful representation23,26,27 or even directly fitting

the intramolecular28 or intermolecular15,29–32 terms to ab initio calculations. Such poten-

tials, which are the type most commonly employed in simulations of liquids, have achieved
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Figure 1: Accuracy of some commonly-used L-J-type empirical models for methane against
the quantum mechanical potential energy surface, compared with the accuracy of the density
each model predicts for bulk methane. The PES accuracy of each model is measured by the
RMS error of the model’s predicted energies of a sample of dimers, measured against quantum
chemical (CCSD(T)-F12) reference energies; The error is computed over the sample of dimers
used to train the 6-D dimer GAP (note 10 meV ≈ 0.96 kJ/mol ≈ 0.23 kcal/mol). The density
predictions were done at 110 K and 316 bar. Density error is given relative to experiment;
the uncertainties on the density are smaller than the sizes of the symbols.
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Figure 2: Comparison of PES accuracy versus density accuracy for the machine learning
models for methane developed in this work; the equivalent comparison for empirical L-J-
type models from Figure 1 is reproduced at the top and far left. The suffixes “/AMBER”
and “/COMPASS” indicate which model was used for the intramolecular (one-body) energy
(the many-body SOAP and 6-D dimer GAP models were only fitted to the beyond-one-
body energy). In the right-hand bar plot, solid bars represent the systematic errors due to
the underlying quantum model and the pastel bars on top represent the statistical errors
introduced by the GAP fit. Refer to the legend of Figure 1 for symbols previously defined.
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high accuracy in reproducing the intramolecular potential energy. However, the restricted

functional forms that they employ to describe the intermolecular interactions – typically

L-J 12-6,21,33 9-6,23 or Morse15,30 potentials – remain too simple to represent the underly-

ing potential energy surface truly faithfully. Instead, they represent thermal averages of the

true potential energy surface that are useful for making predictions within a certain range

of temperature and pressure. These predictions typically break down once the simulations

are either taken far outside of this range, or if they are used to predict properties that were

not considered in the initial fit.34,35 But within the “safe” temperature and pressure ranges,

the traditional potentials still deliver the best predictions precisely because they have been

fitted to reproduce the experimental values.

No family of potentials better exemplifies this philosophy of accurate predictions through

thermal averaging than the TraPPE family of coarse-grained potentials. Both versions of

TraPPE forcefield considered here (the coarse-grained united atom version TraPPE-UA36

and the reduced dimensional version TraPPE-EH34) eliminate degrees of freedom in order

to obtain a simpler description of the system. They have been fitted to accurately reproduce

phase equilibria; they also deliver an accurate prediction of the equation of state of liquid

methane. Figure 1 shows the density predictions of a selection of models at one state point

of liquid methane, compared with their accuracy in reproducing the interaction energy of a

sample of methane dimers calculated at the explicitly correlated CCSD(T) level. We immedi-

ately see that TraPPE-UA delivers an exceptionally accurate density prediction while having

the worst accuracy on the potential energy surface of the dimer (it neglects – by design – the

considerable anisotropy of the dimer’s potential energy surface). The TraPPE-EH version is

similarly accurate in the density, though not much better than TraPPE-UA on the dimer.

In contrast, OPLS-AA33 is the most accurate empirical model of those tested here as far

as the dimer potential energy surface is concerned (a tenth of the error of TRAPPE-UA),

but its density prediction is one of the worst of all of the models shown in the figure (about

a hundred times worse than TRAPPE-UA). Other empirical models are in between these
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extremes: e.g. Li and Chao’s all-atom parametrization32 is five times worse on the dimer

than OPLS-AA, but ten times better in its prediction of the density. COMPASS23 is slightly

worse on the dimer than OPLS-AA, while achieving a density prediction almost twice as

good as that of OPLS-AA.

It is surprising and somewhat sobering that the most accurate prediction of the density

of liquid methane is achieved by the simplest potentials (esp. TraPPE), which do not really

attempt to reproduce the actual Born-Oppenheimer potential energy surface; in fact, every

effort up to now to better capture the potential energy surface by a traditional analytical

potential has lead to worse predictions of the liquid density.

One might simply conclude that the OPLS-AA is still not accurate enough – and it is,

of course, possible to build even more accurate models. Traditional pairwise potentials have

two key limitations: First, the restricted functional form of the pairwise interaction limits its

accuracy, especially when the potential must reliably model large parts of chemical space.

More complex pairwise functional forms have long been used to make more accurate, physics-

based potentials,29,31,37 though they have not been as widely applied – especially for liquid

simulation and equations of state – as the simpler, traditional models. More importantly,

any pairwise model neglects many-body effects. These are significant even within the dimer,

giving rise to the complex, anisotropic form of the short-range potential energy surface

shown in Figure 3. While the electrostatic component is often treated within a formally

many-body framework,37 other components such as the repulsion and the dispersion also

exhibit significant many-body character38 that is less commonly taken into account in liquid

simulations.

The high dimensional fitting approach of machine learning allows us to model all of

this many-body character without the presumption of any particular functional form. We

can explicitly fit the CCSD(T) energies with a Gaussian approximation potential (GAP)6,7

(more details in the supporting information) in the full six-dimensional space of mutual

dimer orientations (with monomers kept rigid). The reference potential for the methane
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dimer that we fit with this method, which we will call the “6-D dimer GAP”, is shown along

with OPLS-AA in Figure 3. This model achieves a consistent level of accuracy across a wide

range of dimer separations and orientations. And yet, when we use it to predict the density

of bulk methane (Figure 2), it is even farther from the experimental value than OPLS-AA.

The goal of the present work is to resolve this apparent contradiction and develop a

methodology for modelling molecular liquids that delivers more accurate predictions as we

systematically increase its accuracy against the underlying quantum potential energy surface,

thereby ensuring that we get accurate answers for the right reasons.

1.1 Quantum-mechanical energies

Several methods are available that approximate the true quantum potential energy surface.

Perhaps the best known of these is density functional theory (DFT),40 which is generally

good at predicting covalent bond energies and intermolecular repulsive interactions. Standard

DFT lacks dispersion interactions, however, so these must be added separately.41 Dispersion

correction schemes for DFT are generally inverse-power terms added on to the total DFT

energy. They range from terms with fixed semiempirical coefficients42 to explicitly geometry-

dependent terms,43 to terms with coefficients that use information from an existing DFT

calculation.44–46 Many of these schemes, such as DFT-D343 and MBD,46 account for many-

body (i.e. beyond pairwise additive) dispersion interactions. This many-body effect has been

shown to be crucial for an accurate description of many dispersion-bound systems such as

supramolecular complexes47 and organic crystals,48 though the effects on molecular liquids

have not yet been extensively studied – a many-body vdW model (D343) was included in the

water potential of Morawietz et al.,49 but it was not mentioned whether a simple pairwise

model would have given different results.

The main drawback of quantum methods that treat electrons explicitly, such as DFT or

quantum chemistry, is their computational cost: MD simulations to predict liquid properties
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Figure 3: Top: Interaction energies of the rigid methane dimer in a selection of orientations.
The TraPPE united-atom (and therefore isotropic) model36 is given by the smooth line; this
model gives the best overall prediction of the equation of state (Figure 6) even though it
completely ignores the anisotropy. Configurations are labeled as in Chao et al.39 (letters)
and Hellmann et al.31 (numbers). Middle: Errors of two models on the methane dimer en-
ergy, the OPLS-AA model33 and a full-dimensional GAP fit, against CCSD(T)-F12 on the
same orientations. Bottom: Errors with ten randomly chosen orientations. A pair correlation
function at 188 K and 278 bar and a histogram of the fitting database are given below for
reference.
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routinely require millions of force evaluations on thousands of atoms,17 which would be

prohibitive even for today’s fastest computers using the most efficient implementations of

DFT. Furthermore, MD simulations require force evaluations on many highly correlated

configurations. But the Born-Oppenheimer potential energy surface is usually assumed to

be smooth and regular, at least in the ordinary realm of closed-shell molecules far away

from level crossings and other exotic PES irregularities. Thanks to this regularity, highly

correlated (similar) configurations will also have highly correlated energies and forces. This

correlation can be exploited to greatly reduce the number of force evaluations required for a

molecular simulation.

1.2 Machine learning potentials

A new generation of potentials aims to exploit this correlation by using machine learning

techniques to directly fit the Born-Oppenheimer potential energy surface.6,50 These fits do not

constrain the potential’s functional form, relying instead on a sufficient sample of existing

calculations to be able to regress (fit) these data points in the high-dimensional space of

nuclear positions. Such potentials are designed to capture much of the accuracy and flexibility

offered by full quantum methods but with a computational efficiency that is many orders of

magnitude higher, enabling MD simulations for system sizes and timescales previously only

accessible to empirical, analytical potentials.

Machine learning potentials have been applied to a wide variety of systems.51 The GAP

method, for example, has been applied to systems ranging from the allotropes of silicon,6

tungsten,52 iron,53 and boron;54 molecular clusters8 and liquids;49,55 and amorphous materi-

als.56–58 There is also considerable interest in general, transferable molecular potentials59 and

accurate modelling of liquid water.49 Recent progress has also been made in modelling multi-

component systems,60,61 and in interpolating between different chemical compounds62–64 and

even across different classes of materials,2 thus approaching the level of flexibility currently

offered by full quantum methods.
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1.3 Quantum nuclear effects

Empirical potentials have been fit to reproduce experimental equations of state, so they

include quantum nuclear effects implicitly. In contrast, when simulations are done with a

systematic approximation of the Born-Oppenheimer potential energy surface, it becomes

necessary to account for quantum nuclear effects in an equally systematic manner.65,66 These

effects are especially important at low temperatures and with light nuclei; their importance in

liquid alkanes in particular has long been established67 and was recently highlighted68 using

quantum mechanically fitted forcefields. In empirical potentials these effects are typically

included in an average way, since they are naturally present in the experimental data used

to fit the potentials; some potentials31 also use a semiempirical or approximate method to

include these effects. But in order for a potential to systematically fit the true potential

energy surface it cannot include quantum nuclear effects at the level of the fitting, because

the true Born-Oppenheimer potential energy surface does not itself include these effects.

Thus, fitting methods that include such an average contribution are not fitting the true

potential energy surface and are therefore incompatible with the current strategy.

The most common and practical technique for including quantum nuclear effects (ZPVE

and nuclear tunneling, but not the nuclear exchange) in MD simulations is via path inte-

gral molecular dynamics (PIMD), where the quantum system is represented by P replicas

of the classical system, corresponding atoms being joined across the replicas by harmonic

springs in a ring-polymer structure.65,69–71 Recent techniques, including improved stochastic

thermostats72–74 and ring polymer contraction,75 are making PIMD practical even for large

systems and more expensive potentials such as the ones employed in this work.

Despite these new developments, ab initio liquid simulation remains a challenge. The

process of designing a machine learning potential for a new material, especially for amor-

phous or liquid simulation, is still a laborious manual process. In this work we develop a

methodology that will eventually serve as a foundation for more systematic, and therefore

more easily automated, development of potentials for more complex molecular liquids.
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2 Model development methodology

Fundamental to this methodology is a strategy common to most successful potentials for

molecular systems: The energy of the system is decomposed into several terms that each

represents a different physical interaction. From the point of view of a physics-based ana-

lytical potential, this decomposition is useful because the different physical interactions will

typically have different functional forms, and it makes sense to parameterize them sepa-

rately. From the point of view of a machine learning potential, the main advantage of an

energy decomposition scheme is that it separates physical effects that take place at different

length and energy scales and prevents the larger effects from overwhelming the smaller ones;

while the smaller components might not be important in reproducing the total energy, other

important observables (such as the density or the diffusivity) might well weight these con-

tributions much higher. By controlling the accuracy of the several components separately it

is possible to achieve good accuracy on any property of interest.

In a molecular liquid such as methane, the primary separation in energy scales is between

the strong intramolecular (covalent) interactions and the weak intermolecular (noncovalent)

interactions. These two types of interactions are easy to separate and have characteristic

energy scales that are orders of magnitude apart. The second separation we will employ here

is motivated by the length scales of the interactions, as machine learning potentials tend to

work best for fitting functions that vary on a single length scale. In methane, the dispersion

(van der Waals) interaction is very long-ranged, being still relevant at C-C distances as large

as 15 �A, but the various repulsive interactions generated by electron cloud overlap die out

by C-C distances of 5 �A. The energy equation we will use is therefore:

Etotal = E1b + Erepulsion + Edispersion + Eelectrostatic + Einduction (1)

where the “1b” (one-body) energy is the covalent part and everything else makes up the

intermolecular (more formally, beyond one-body or “b1b”) energy. The repulsion and elec-
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trostatic terms are computed from DFT beyond-one-body interactions – electrostatics, in

contrast to dispersion, is handled well by DFT. The dispersion term is computed separately,

as discussed above.

The electrostatic energy may be significant at short range but it decays quickly in com-

parison to the dispersion interaction in systems, particularly hydrocarbons, without sig-

nificant charge separation.76 To illustrate for the case of pure methane, the electrostatic

energy predicted by OPLS-AA is consistently about two orders of magnitude smaller than

the other non-bonded terms; see Figure 1 of the supporting information. In pure methane

the molecule’s symmetry additionally bounds the decay rate of the long-range electrostatic

interaction: All its permanent electrostatic moments below the octupole cancel. Since the

interaction energy of two octupoles decays77 as r−7, the electrostatic energy can be rigorously

expected to decay more quickly than the lowest-order dispersion term, making dispersion the

most important contribution for the long range – especially for the tail corrections beyond

the potential’s cutoff. Together, these considerations allow us to fold the electrostatic en-

ergy along with the even smaller, shorter-ranged induction term and the strictly short-range

penetration term into the short-range “repulsion” term – hereafter called Esr,b1b (for “short-

range beyond-one-body”). Future versions of this potential could easily treat electrostatics

and induction explicitly, however, either to achieve higher accuracy or (more importantly)

to be able to treat systems with significant charge separation.

Apart from separation of interaction length scales, another advantage of this energy

decomposition approach is that it allows us to capture the different physical contributions

and study their effects separately. Some recent analytical potentials take the approach of

more directly representing the underlying physics by extracting forcefield parameters from

fundamental physical quantities such as the electron density. Models using this approach

include the Slater-ISA model of Van Vleet et al.37 (including the more recent anisotropic

version38), the Monomer Electron Density Force Field of Vandenbrande et al.,78 and the

biomolecular force field of Cole et al..79 The IPML model of Bereau et. al.80 goes one step

13
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Figure 4: Histograms over mass density of the cells in the training and two test sets, in-
terpolation and extrapolation. The distributions of densities encountered in the subsequent
PIMD simulations with the (PBE0 SOAP)/COMPASS + T-S + MBD(PBE0) SOAP model
are shown below for comparison.

further by using machine learning to efficiently predict these properties across chemical

compound space. While the physical interpretability of these models is appealing, it comes

at the cost of sacrificing a best-possible fit to the true quantum potential energy surface. In

the present work, as described below, by capturing most of the dispersion energy with simple

analytical form and fitting a correction on top, we do use physics to guide our description of

the interaction while maintaining complete flexibility of the functional form.
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2.1 Many-body machine learning model

To fit the Esr,b1b term we use the GAP method6,7 with the SOAP kernel,81 both developed

and used by our group to fit complex, many-body potentials. The SOAP-GAP potentials

were fitted to DFT82,83 energies and forces computed on 280 periodic unit cells representing

bulk methane, each containing 27 methane molecules. The beyond-one-body components

of energies and forces were obtained by separately computing them for all monomers and

subtracting from the total. The samples were taken from MD trajectories performed under

liquid conditions run using a classical potential (OPLS/AMBER84,85) at a temperature of

188 K and five pressures ranging from 0 bar to 400 bar. The resulting training set consisted

of a wide range of densities; see Figure 4. However, the typical densities encountered during

a simulation at 110 K in the same pressure range fall partly outside this range, exercising

both the model’s interpolation and extrapolation capabilities. To validate these capabilities,

independent samples were drawn from OPLS/AMBER simulations at both temperatures,

with several samples taken from each of the state points where classical results are shown in

Figure 6 below. The histogram of the densities of these test sets is also shown in Figure 4.

Based on the position of these distributions relative to the test set, the 12 test samples taken

at 188 K were labeled the “interpolation” test set and the 14 samples from 110 K were labeled

the “extrapolation” test set.

The DFT calculations on all cells were done using CASTEP.86 Two functionals were used,

the pure GGA functional PBE87 and the hybrid GGA functional PBE0.88 The GAP fits

were done using the SOAP descriptor,81 resulting in two models called “PBE SOAP-GAP”

and “PBE0 SOAP-GAP”. The performance of the PBE0 SOAP-GAP is assessed in Figure 5,

which indicates good reproduction of both energies and forces on the training set. Since GAP

is a statistical learning method, this is usually a good measure of how the method will perform

on similar geometries. The interpolation performance indicates some degree of overfitting,

while the extrapolation performance is notably poorer – but the model still achieves an error
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Figure 5: The PBE0 and MBD(PBE0) SOAP-GAP fits on 258 cell interaction (beyond one-
body, “b1b”) energies and (only for PBE0) corresponding forces. Top: Correlation plots with
the line y = x of perfect correlation. Bottom: Errors on a logarithmic scale. The blue dots
represent the training set. The orange dots represent the interpolation test set and the red
triangles represent the extrapolation test set, neither of which was used in training the model.

of less than 1 meV per molecule under conditions that were never represented in the training

set. The variability of this error measure was assessed with a cross-validation (CV) procedure:

Ten disjoint sets of twelve points each were selected from the training data, and each in turn

substituted with the interpolation test set to train ten additional GAP models. The numbers

reported in Figure 5 are obtained as the mean and standard deviation of the errors across

this set of eleven GAPs, with the withheld points standing in for the interpolation test

set in each validation GAP. The errors on the forces show the same pattern: The training

set error is (6.56± 0.03) meV/�A, the interpolation test set error is (6.8± 0.6) meV/�A, and

the extrapolation test set error is (8.71± 0.05) meV/�A. Plots of the forces for the similar

PBE SOAP-GAP, along with its energy and force errors, can be found in the supporting

information.
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The computational effort required to generate the training database was considerable; a

typical PBE calculation took 10 minutes on 24 processor cores on a Cray XC30 system,89

with the additional monomer calculations approximately doubling the total required time.

The PBE0 calculations were even more expensive, taking anywhere from 50 minutes to

several hours on the same system; the PBE0 database required overall about four weeks to

generate using 27 nodes of 24 cores each. The fitting of the SOAP-GAPs, on the other hand,

completed in less an hour on a 16-core machine,90 and the evaluation of the SOAP-GAP

energies and forces requires less than 3 processor-seconds on a cell of 100 methane molecules.

A further advantage of the GAP approach becomes apparent here, as the computational

cost of evaluating the model is independent of the cost of the reference energy chosen: We

can run our simulation at PBE0 accuracy without incurring additional computational cost

over PBE – minus the initial cost to generate the training database, of course. This initial

computational cost is more than recovered by the subsequent savings in running the dynamics

with a SOAP-GAP rather than with DFT. In fact, since doing large liquid simulations with

DFT is still often beyond the capability of today’s most powerful computers, the initial cost

of the machine learning database and fitting serve to make the hitherto impossible possible.
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2.2 Dispersion model

The dispersion component, the third term in Equation (1), was accounted for using two

levels of theory. The first was the pairwise correction of Tkatchenko and Scheffler.45 This

method uses relative atomic volumes from a Hirshfeld partitioning91 of the electron density,

an idea introduced by Becke and Johnson,44 and relates them to free-atom dispersion coeffi-

cients (those computed by Chu and Dalgarno92 were used here). Recomputing the Hirshfeld

volumes for each step of an MD simulation would be impractically expensive, as that would

require a new DFT calculation at each step. Instead, the first level of theory only uses the

per-element average of the relative Hirshfeld volumes across the sample of DFT cells. The

dispersion correction can then be applied as an analytical pair potential whose form and

parameters are fixed throughout the simulation, a scheme hereafter termed “T-S(fix)” or

simply “T-S”.
The second level of theory is the MBD, or many-body dispersion, method.46,93 Despite

the greater complexity of the MBD approach, we can still expect a large part of the total

MBD energy to be captured by the pairwise Tkatchenko-Scheffler method, as evidenced by

the success of the latter method in predicting dispersion energies. Thus, another SOAP-GAP

was fit to the difference between the MBD energies only and the (fixed) T-S term as the

baseline, once each for PBE and PBE0 Hirshfeld volumes. This model, termed “MBD(PBE)

SOAP-GAP” (and the corresponding “MBD(PBE0) SOAP-GAP”), accounts for relatively

short-ranged many-body effects. The dispersion energy term from Equation (1) therefore

becomes:

Edispersion = ET-S(fix) + EMBD SOAP-GAP. (2)

The MBD SOAP-GAP also implicitly accounts for the variability of the Hirshfeld volumes

that was neglected in the fixed T-S model (ET-S(fix) −ET-S(variable)): The SOAP descriptor is

sensitive to the intramolecular and short-range geometrical factors that (presumably) also

account for the variability of these volumes. The MBD(PBE0) fit is likewise assessed in

Figure 5, showing that both its interpolation and extrapolation performance is similar to
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that of the PBE0 SOAP-GAP.

Another, more technical motivation for fitting the dispersive interactions separately from

the repulsive interactions (besides the ability to use a readily available baseline) is that

analytical gradients, which significantly improve the fit, are easily available for the plain

DFT energy but not for the MBD energy – at least, not in the real-space implementation

used in this work. In principle, one could compensate for the lack of analytical gradient data

by including more configurations, although in practice this was found not to be necessary.

Finally, a complete model for liquid methane must also include an intramolecular com-

ponent (the first term in Equation (1)). Two empirical potentials are considered for this

purpose: AMBER85 includes only harmonic bond and angle terms, while COMPASS23 in-

cludes higher-order anharmonic and cross-coupling terms. Both models were tested in order

to help measure the influence of such effects (anharmonic and cross-coupling) on the pre-

dicted properties, especially with the inclusion of quantum nuclear effects.

3 Results

The first test of the accuracy and applicability of any potential for liquids is how well it

reproduces the experimental equation of state. While most empirical potentials (for exam-

ple OPLS84) are fit to reproduce experimental thermodynamic data, the fitting conditions

are often only a single state point per material, usually standard temperature and pressure.

Some potentials, like TraPPE,36 are fit to reproduce thermodynamic data across a wide

range of state points, in this case by fitting coexistence curves. Therefore, a wide range of

temperature and pressure conditions were chosen to test the accuracy of the potentials con-

sidered. Two isotherms were chosen where experimental data was available (from Goodwin

and Prydz94): At 110 K, density measurements were available at 5.93 bar, 64.5 bar, 116 bar,

179 bar, 238 bar and 316 bar.95 At 188 K, density measurements were available at 86.9 bar,

163 bar and 278 bar.95
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The three models chosen for testing were the “PBE SOAP-GAP” model with both fixed

T-S (“+ T-S”) and MBD (“+ T-S + MBD(PBE) SOAP”) dispersion, and the “PBE0 SOAP-GAP

+ T-S + MBD(PBE0) SOAP-GAP”. The 6-D dimer GAP and all of the SOAP-GAP models

were first tested at the state point 110 K and 316 bar using a “smart sampling” coloured-

noise thermostat for efficient equilibration.96 The convergence of the results towards the

experimental density is illustrated in Figure 2; for brevity, all the “SOAP-GAP” models are

labeled simply with “SOAP”.

The density predictions are shown against the error of the underlying quantum model

computed on a sample of dimers with CCSD(T)-F12 taken as the reference. The statistical

uncertainty introduced by the fits is shown and added to the systematic uncertainty already

given by the quantum model.

Evidently, the predictions for the density at both state points improve as the disper-

sion model is made more sophisticated, and therefore more accurate as measured on the

methane dimer. Adding the MBD SOAP-GAP lowers the density by 15 kg/m3, improving

the prediction by 3.4 % with respect to experiment and further underscoring the importance

of many-body, i.e. beyond-dimer, effects, discussed earlier in relation to the 6-D dimer GAP.

The short-range improvement offered by switching to PBE0 gives a further 7.2 kg/m3 (1.6 %)

improvement. While the figure indicates that there are still effects not included by the dimer

measure of accuracy – especially the intramolecular potential and many-body (beyond dimer)

effects – it still shows a general trend of improvement of the potential’s predictions as it more

accurately represents the underlying potential energy surface. Crucially, this is a trait not

shared by empirical potentials – TraPPE, OPLS/AMBER and the Li-Chao L-J – which show

the opposite behaviour.

The quantum nuclear effect was assessed in an explicit way, using a PIMD simulation

using the PIGLET thermostat.73,74 With this effect included, the best model (“PBE0 SOAP

+ T-S + MBD(PBE0) SOAP”) delivers a prediction within 0.3 % (nearly within simulation

uncertainty) of the experimental density. This decrease in density is of the same order of
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Figure 6: Equation of state at two temperatures, 110 K and 188 K, as predicted by various
atomistic models. The bulk SOAP-GAPs with different dispersion models are shown, as
is the 6-D dimer GAP. All-atom empirical models are shown in gray. Experimental data
from Goodwin and Prydz.94 The small black lines are error bars on the PIMD simulations
computed using the blocking method described in the supporting information. Refer to the
legends of Figures 1 and 2 for symbols previously defined.

magnitude as that reported in Pereyaslavets et al. 68 , though with this potential the effect

is smaller – 4.2 % instead of 9 %. Figure 6 shows that the size of the effect is roughly the

same across the 110 K isotherm, so even at the 112 K, 1 bar state point used in that study we

would expect to see a somewhat smaller effect. The decrease is evidence of the competition

between two distinct effects of the zero-point vibrational motion: In the gas phase of methane,

zero-point vibrational contributions increase the molecular C6 (first pairwise dispersion)

coefficient and hence the strength of the intermolecular attraction.31,97,98 But these same

effects also increase the molecular volume,67 ultimately leading to a decrease in the density

of the condensed phase. The ab initio quality potentials presented here provide the necessary
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accuracy, especially in the short repulsive regime, for further study of this effect.

The performance of the models across both of the experimental isotherms is shown in

Figure 6. For comparison, the L-J-type potentials from Figure 1 were tested at all the state

points at 110 K and 188 K with experimental data, plus an additional point at 400 bar for

each isotherm to show the high-pressure trend. Note in particular that the empirical all-atom

potentials all shift with respect to experiment between the two isotherms. Most models, the

SOAP-GAPs included, have more trouble reproducing the density at the 188 K isotherm,

perhaps because of the proximity of the lowest-pressure point to the critical point (190.58 K

and 46.04 bar99). Only the united-atom model TraPPE-UA maintains accuracy across the

whole space of conditions covered, with the explicit-hydrogen description TraPPE-EH closely

following in consistency. The series of SOAP-GAP potentials delivers predictions of increasing

accuracy, in correlation with the accuracy on the dimer. Despite the relatively large statistical

fluctuations in the PIMD SOAP-GAP density predictions, the model is still more consistently

accurate (comparing across both isotherms) than any other model fit to the quantum PES,

especially with the explicit inclusion of quantum nuclear effects. It thus appears essential to

include quantum nuclear effects in order to make accurate predictions with a potential fitted

to the Born-Oppenheimer quantum potential energy surface. Other potentials that achieve

agreement with experiment without explicit treatment of these effects must be incorporating

them into the potential energy surface itself, which is at odds with our stated goal of achieving

the agreement with experiment in an ab initio manner by best fitting the potential energy

surface.

In summary, while TraPPE potentials obtain their accuracy by fitting to experimental

data across wide ranges of temperature and pressure, the SOAP-GAP potentials obtain their

accuracy by fitting to the underlying quantum mechanical description of matter and system-

atically converge to within 0.5 % of the experimental value as their description is improved

Additionally, even the current best SOAP-GAP model still has several routes of potential

improvement that would not be open to a fixed-form analytical potential, such as changing
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the intramolecular model for a more accurate, fitted one or improving the dimer description

to the coupled-cluster dimer GAP level (which can be done using existing techniques, e.g.

by adding a further two-body correction to the SOAP-GAP model8,55).

While the computational cost of the SOAP-GAP potentials presented here is significant,

especially including the generation of the training set, it is a tiny fraction of what the

cost would be to do PIMD with the explicit PBE0+MBD method. Each PIMD datapoint

required about a week on 16 nodes of 24 cores each on the Cray XC30 system,89 so the

PIMD data points in Figure 6 required about twice as much time to generate as the PBE0

training set itself. Consider, however, that these potentials offer a speedup of between 5000

(PBE) to 30 000 (typical PBE0) over single-point DFT calculations on the system sizes

tested; furthermore, the expensive short-range (SOAP-GAP) components of the potential

scale essentially linearly with the system size thanks to their small, finite cutoffs. These

improvements do more than just make simulations more efficient: They make the previously

impossible – large, expensive liquid simulations, even with quantum nuclear effects, at the

level of many-body dispersion-corrected DFT – possible.

4 Discussion

The fitting and testing of the SOAP-GAP and dimer potentials for liquid methane reveal

three key findings for the description of molecular liquids: First, many-body effects – not only

within the dimer, but also beyond-dimer effects – are essential, especially in the short range,

for obtaining an accurate description of the bulk density. Second, an explicit description of

quantum nuclear effects is equally important, especially at the temperatures and pressures

considered here. Third, systematic measures of the accuracy of the potential (such as the

dimer error measure presented here) are a good guide to improving systematically fitted

potentials toward convergence with the experimental results, a goal which the best many-

body GAP model (PBE0 SOAP-GAP + T-S + MBD(PBE0) SOAP-GAP) presented here
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comes close to achieving.

The methodology presented here represents a new, physics-based, systematic path to-

ward creating exceptionally accurate potentials for molecular liquids. The methodology is

applicable to longer hydrocarbons directly; it remains to be seen what the data requirements

will be that guarantee sufficient accuracy. Furthermore, the ideas presented here could be

extended to other types of long-range interactions, such as electrostatics and induction, in

order to extend accurate machine learning potentials to a wider variety of molecular liquids.

There is already some evidence that moderately long but finite cutoffs might be sufficient,

at least for describing the liquid state;49 if long-range contributions are required, they can

be computed using machine learning of local electrostatic properties.80,100,101

5 Computational Methods

5.1 Gaussian processes

The GAP machine learning method used to fit the potential energy is based on Gaussian

process regression and is part of the family of kernel learning methods.6,7 Such methods

perform linear fits in a transformed data space: The nonlinearity of the function is now

captured in a kernel function, also called a similarity or covariance function, which usually

measures the similarity between two local atomic environments (although they can also be

designed to capture long-range and global properties).

Formally, the potential energy suface is represented as a Gaussian process.102,103 The

covariance matrix of this process is formulated to use the information provided by quantum

calculations, i.e. total energies and derivatives, in a natural way through linear operations

on the kernel. This allows the Gaussian process to provide a smooth approximation of the

potential energy surface, as sampled by the quantum data points, in the high-dimensional

space of atomic or molecular environments using just a linear combination of kernels; for
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example, the local energy of an atom i is given by:

εi =
∑
j

αjk(dj,di) (3)

where the d are descriptors of local atomic environments, k designates the covariance or

kernel function, and the weights α are determined by a regularized least-squares linear fit to

the quantum mechanical training data (in this view, the predictions of Gaussian processes

are the same as those given by kernel ridge regression (KRR) with a radial basis).7 In GAP,

the sum runs over a subset of representative configurations in the training set, allowing the

fitting to scale linearly with the number of input data points.

The most successful kernel function for condensed-phase GAP has been the SOAP ker-

nel,81 which takes the similarity between local atomic environments. The environment of

atom i is represented by a neighbour density ρi(r), defined as a sum of Gaussians placed on

each neighbouring atom, multiplied by a spherical cutoff function which smoothly takes the

density to zero outside some cutoff radius. The kernel between two environments is defined

as the integral over all possible mutual rotations of the square of the overlap between the two

neighbour densities, thus making the kernel obey the same symmetries as the local energy:

Invariance to translations (environments are atom-centred), permutations (from summing

like atoms in the neighbour density), and rotations (from the rotational integration).

In practice, the integration over rotations can be done analytically by expanding each

neighbour density in spherical harmonics and radial basis functions:

ρi(r) =
∑
nlm

c
(i)
nlmgn(r)Ylm(r̂),

computing the power spectrum elements

p
(i)
nn′l =

1√
2l + 1

∑
m

c
(i)
nlm(c

(i)
n′lm)†,
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and summing in order to obtain the covariance function:

k0(ρi, ρj) =
∑
nn′l

p
(i)
nn′lp

(j)
nn′l (4)

which is then normalized to obtain a proper kernel and optionally raised to some power

ζ > 1 to increase the sensitivity to changes in the local environment.7,81

Note here that the local environment of atom i is represented by a set of numbers p(i),

which can be interpreted as a “descriptor” or even “feature vector” of the environment.

Many other kernels are formulated in terms of other descriptors, such as the 6-D dimer

kernel described in the supporting information.

The GAP models used in this study were all fit and evaluated using the libAtoms/QUIP

package.104 The GAP code can be downloaded at http://www.libatoms.org/gap/gap_

download.html, with a precompiled version available through Docker at https://hub.

docker.com/r/libatomsquip/quip/. The fitted potentials as well as all the training data

are available from http://dx.doi.org/10.17863/CAM.26364.

5.2 MD simulations

The MD simulations were run using QUIP104 and i-PI105 via LAMMPS.106,107 The former

used the adaptive Langevin thermostat of Jones and Leimkuhler108 and a Hoover-Langevin

barostat109 while the latter used a thermostat based on the generalized Langevin equa-

tion (GLE, otherwise known as coloured-noise thermostats), namely the “smart sampling”

method of Ceriotti, Bussi, and Parrinello,96 for the classical simulations and PIGLET73,74

for the PIMD simulations. The initial configurations for all simulations were generated using

Packmol.110

The traditional analytical potentials were run in LAMMPS106 with a Langevin thermo-

stat111 and a Nosé-Hoover barostat112–116 with the MTK correction.117 For potentials with a

Coulomb component (OPLS/AMBER and COMPASS), the contributions beyond the cutoff
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were calculated with the particle-particle particle-mesh (PPPM) method.118

5.3 Dimer fits

The coupled-cluster CCSD(T) energies of the methane dimer were computed in a similar way

as described in Gillan et. al.8 (explained in more detail in the supporting information), up to

the level of CCSD(T)-F12.119–121 The energies were corrected for basis-set superposition error

(BSSE) using the Boys-Bernardi counterpoise procedure.122 Calculations were done using

the MOLPRO suite of programs.123–126 The Atomic Simulation Enviroment (ASE)127 was

used to generate and manipulate geometries. For the dimer error numbers used in Figure 2,

energies (PBE and PBE0) were computed with Psi4128 and the Hirshfeld partitioning91 was

done using HORTON.129–132

The geometries for the randomly chosen orientations were directly sampled from a liquid

MD simulation (details in the supplementary information). Ten orientations were sampled

and each used to produce a binding curve with regularly spaced dimer separations.

Finally, all the plots in this paper were made using Matplotlib;133 the analysis was done

within the Jupyter interactive computing enviroment with the IPython kernel,134 and molec-

ular views were with VMD.135
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(56) Deringer, V. L.; Csányi, G. Machine learning based interatomic potential for amor-

phous carbon. Phys. Rev. B 2017, 95, 094203.
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purpose quantum chemistry program package. WIREs Comput Mol Sci 2012, 2, 242–

253.
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