13,842 research outputs found

    Some Consequences of the Baryonic Dark Matter Population

    Full text link
    Microlensed double-image quasars have sent a consistent message that the baryonic dark matter consists of a population of free-roaming planet mass objects, as summarized previously. These were previously predicted to have formed at the time of recombination, 300,000 years after the Big Bang, whence they collapsed on a Kelvin Helmholz time scale. Today they are glimpsed as the cometary knots in planetary nebulae. But they probably also nucleate the mysterious Lyman-alpha clouds and cause a reduction in the transparency of the universe to distant quasars and supernovae.Comment: Report to the Edinburgh International Dark Matter 2004 Symposiu

    Thermodynamic Calculations of Hydrogen-Oxygen Detonation Parameters for Various Initial Pressures

    Get PDF
    Composition, temperature, pressure and density behind a stable detonation wave and its propagation rate have been calculated for seven hydrogen-oxygen mixture at 1, 5, 25 and 100 atm initial pressure, and at an initial temperature of 40C. For stoichiometric mixtures that calculations also include an initial temperature of 200C. According to these calculations the detonation velocities of hydrogen-oxygen mixtures increase with increasing initial pressure, but decrease slightly when the initial temperature is raised from 40 to 200 C. The calculated detonation velocities agree satisfactorily with values determined experimentally. These values will be published in the near future

    A Lattice Gauge Model of Singular Marsden-Weinstein Reduction. Part I. Kinematics

    Get PDF
    The simplest nontrivial toy model of a classical SU(3) lattice gauge theory is studied in the Hamiltonian approach. By means of singular symplectic reduction, the reduced phase space is constructed. Two equivalent descriptions of this space in terms of a symplectic covering as well as in terms of invariants are derived.Comment: 27 pages, 6 figure
    corecore